News

Most recent events related to MADMAX



  • Dark Photon Dark Matter

    August 2024

    The MADMAX collaboration has released its first results from a search for dark photon dark matter . The prototype experiment targeted a mass range between 78.62 and 83.95 μeV/c².

    Dark photons, hypothetical particles, are believed to interact with ordinary photons under certain conditions. In this experiment, a system comprising three sapphire disks and a mirror was designed to detect these interactions. The setup works by converting potential dark photons into detectable photons, which were then analyzed using a low-noise receiver.

    Despite the sensitive design, no signals attributed to dark photons were found above the expected background noise. However, the data set significant new limits on the dark photon-photon mixing parameter χ, ruling out values greater than 3.0 × 10⁻¹² across the entire mass range, with a particularly stringent exclusion of χ > 1.2 × 10⁻¹³ at 80.57 μeV/c², both at a 95% confidence level.

    This result is the first from a MADMAX prototype, and it surpasses previous constraints on dark photon dark matter by nearly three orders of magnitude in this mass range. The MADMAX team continues to refine their methods as they push forward in the quest to uncover the mysteries of dark matter.


  • New focussing mirror for MADMAX prototype

    June 2024

    For MADMAX's prototype, a mirror focussing the outcoming microwave radiation from the MADMAX booster onto the antenna and receiver chain is needed. This large aluminium parabolic mirror (1000 mm x 650 mm) has been manufactured by the mechanical workshop at the Max Planck Institute for Physics. The weight of the mirror is approximately 48 kg (entire structure 90 kg) and the surface roughness satisfies the MADMAX requirement. This mirror is an important steps towards the finalisation of the final MADMAX's prototype to be assembled at DESY later this year and tested at CERN in 2026. .


  • New CB200 detector sucessfully tested at CERN

    March 2024

    During our latest search for dark matter, we put our brand new 200 mm closed booster detector (CB200) to the test in the Morpurgo magnet at CERN. This is a significant step as we could successfully tune and reconfigure the booster to stably operate in the broad range from 18 to 20 GHz. During a dedicated two week run, we performed a room temperature dark matter search and managed to cover 5 frequency points.


  • Collaboration Meeting at CERN

    March 2024

    MADMAX collaboration meeting took place at CERN March 13th-15th during the MADMAX prototype tests. All collaboration members could visit the experimental area around the Morpurgo magnet and discuss about the first analysis of the data taken with the CB100 and CB200 prototypes. First publications on these data are expected in 2024.


  • CB100 at CERN/MORPURGO magnet

    March 2024

    By using a glassfiber epoxy cryostat (G10) in the CERN MORPURGO magnet, for the first time MADMAX has been able to run a dark matter search in a 1.6 T magnetic field at cryogenic temperatures (below 8 K).

    ClosedBooster100 (CB100) is, with three 100 mm diameter sapphire discs, MADMAX's smallest prototype. It allows to look for axion-like-particles at a frequency of approximately 18.9 GHz.

    Do not miss our fantastic series of photos and videos!


  • Axion Knowledge Bar@MADMAX

    December 2023

    On December 2023, the UHH team from the MADMAX collaboration had the chance to host Olivier Rossel and to be part of his fascinating project. As an artist, currently working on his PhD in Science and Technology Studies, Olivier is interested in the field of tension, where arts practices and experimental physics come together. For this purpose, he closely studied MADMAX inside the SHELL Hall on Campus Bahrenfeld for two weeks and intervened with an artistic action.

    You can read more about it here .

    Photo: AG Garutti


  • A Giant Dipole for Axion Search

    December 2023

    The October Issue (volume 33, issue 7) of IEEE Transactions on Applied Superconductivity has featured a special section on the scientific and technological development of the MADMAX magnet.

    This issue consists of seven papers focussing on the MADMAX magnet and conductor, as well as on the quench propagation study performed with the MACQU solenoid.

    The editorial of the MADMAX Special section can be found here: IEEE Editorial


  • MADMAX welcomes two new associate members

    November 2023

    The Fermi National Accelerator Laboratory in USA (Fermilab) and the Irène Joliot-Curie Lab in France (IJCLab) are now associate members of the MADMAX collaboration.

    Both institutes will support the MADMAX collaboration with their expertise in the field of radiofrequency measurements.


  • Commissioning of a non-magnetic cryostat

    May 2023

    A new cryostat made of a glass epoxy laminate (G11) has been designed, produced and commissioned together with the Central Cryogenic Laboratory (Cryolab) at CERN. The inner diameter of the inner vessel is 342 mm, thus allowing to install different setups inside it. This non-magnetic cryostat will allow to cool down our setups, e.g. CB100 (shown in the photograph), inside the MORPURGO magnet to temperatures below 10 K for several hours. This will improve significantly the sensitivity reach of our prototypes.

    Three commissioning runs were performed at the CERN Cryolab in March, April and May 2023, demonstrating that a temperature below 10 K could be reached for 23 hours.


  • Experimental campaign at MORPURGO

    April 2023

    In March and April, a Closed Booster with 3 fixed 100 mm diameter discs (CB100) was inserted in the MORPURGO dipole magnet at CERN. A very stable magnetic field around 1.6 Tesla was maintained for 21 days. The online monitoring of the power frequency data indicates that the system stability is sufficient to extract a limit on ALP photon coupling for an ALP mass of 80 μeV.


  • Podcast about dark matter

    November 2022

    Prof. Dr. Erika Garutti (UHH) explains in the 21st episode of the podcast "Exzellent erklärt. Spitzenforschung für alle" (Excellent Explained. Cutting-edge research for all) how MADMAX aims to search for dark matter. Only in German.

    "Exzellent erklärt" podcast about dark matter

    Photo: Jens Rüßmann / QU


collab_meeting_Sept2022
  • MADMAX Collaboration Meeting

    September 2022

    After three years of Zoom meetings, the MADMAX collaboration members have finally met in person in a three-day meeting in Hamburg. Besides many very interesting presentations and scientific discussions, the collaboration members had also the chance to visit the SHELL laboratory (UHH) and the HERA North Hall at DESY, the future home of the MADMAX experiment.


The official MADMAX logo
  • CNRS Helmholtz Dark Matter Laboratory

    September 2022

    MADMAX is recognised as a central project of the "CNRS Helmholtz Dark Matter Laboratory", DMLab, an International Research Laboratory (IRL) between the CNRS/IN2P3 and the Helmholtz Association whose scientific kickoff took place in December 2021. DMLab aims to address various challenges in dark matter physics in French-German cooperation.

    Formally, DMLab is an CNRS research laboratory outside France sited at DESY, which will act as a scientific and administrative hub extending over the four Helmholtz centres (DESY, Forschungszentrum Jülich, GSI Helmholtzzentrum für Schwerionenforschung, and Karlsruher Institut für Technologie). DMLab will offer resources for the organisation of workshops, training events, and travel. The projects encompassed by DMLab are expected to be funded and staffed by IN2P3, Helmholtz as well as universities and other partner institutes. DMLab has been created for renewable periods of 5 years.


  • RFI and CB100 measurements at MORPURGO

    May 2022

    In March and April, a successful series of radio frequency interference (RFI) measurements were conducted in the area surrounding the 1.6 Tesla MORPURGO magnet at CERN. The aim was to identify and remove unwanted interference signals that may interfere with the feeble power coming from a potential axion signal. The CB100, or Closed Booster 100 mm in reference to its diameter, was inserted into the MORPURGO magnet and data were recorded at 1.6 T.

    Image: CB100 prepared to enter the 1.6 Tesla MORPURGO magnet


  • Quench propagation velocity tests

    April 2022

    The 9 T MADMAX magnet will be one of the most challenging magnets ever designed. One of the main challenges in the design of any new superconductor magnet is to prevent quenches. For this purpose, the MADMAX Coil for Quench Understanding (MACQU), a solenoid magnet using a novel conductor, has been produced and tested by Bilfinger-Noell and CEA-Saclay, respectively. Quench propagation velocity tests with the MACQU coil were successfully performed showing a velocity of several meters per second. This velocity is fast enough for a quench to be detected before the magnet is damaged. With these tests, one of the main risks in the design of the MADMAX magnet has been mitigated.


  • Project 200 tested in a B-field

    April 2022

    P200 has been tested for the first time in a strong magnetic field in the MORPURGO magnet at CERN. The feasibility of moving a sapphire disc in a 1.6 T field has been verified. No differences in the disc movement were observed when the magnet was in operation.


  • Project 200 tested at cryogenic temperatures

    March 2022

    P200 has been tested for the first time at cryogenic temperatures in the Cryolab at CERN. In the first test, three of the MADMAX piezoelectrical motors were driven together in a coordinated way at approximately 20 K (first tests performed with no disc). The movement and positioning of the motors were monitored using a cryo-compatible laser interferometer. First results confirm the feasibility of moving a disc in these extreme conditions using the piezo motors designed by the company JPE.

    In a second experimental run, three piezo motors have moved a sapphire disc of 200 mm diameter inside the cryostat.


  • Piezo motor tested in a strong magnetic field

    January 2022

    In the final MADMAX experiment, approximately 80 dielectric disks will be moved, and positioned, by high-precision motors. These motors will have to withstand very low temperatures (~4 K) and a strong magnetic field (~9 T). MADMAX's first piezoelectric motor, developed by the company JPE, has been successfully tested in a 5.3 T magnetic field at approximately 5.1 K, thus demonstrating its capabilities. The tests were carried out at DESY in one of the ALPS-II test magnets.


Project 200
  • Project 200 assembled at UHH

    December 2021

    Project 200 (P200) is MADMAX's first mechanics prototype. It consists of an aluminium structure holding a copper mirror fixed in position and a dielectric disc. The position of the disc can be adjusted with the help of very precise piezoelectric motors supplied by the company JPE. With this setup, MADMAX aims to verify the feasibility of moving the MADMAX discs with the required precision at very low temperatures (~4 K) and, eventually, also in a magnetic field. In the photo, one can see the structure, the Cu mirror, the tiled disc attached to three motors via a ring, as well as the ceramic rails along which the motors move.


Néel Logo
  • Néel Institute joins the MADMAX collaboration

    November 2020

    Néel Institute, Grenoble has now become a full member of the MADMAX collaboration.


ALPs
  • CERN endorses the MADMAX tests

    October 2020

    CERN has endorsed the MADMAX prototype tests in the Morpurgo magnet located in the Prevessin North Area. This is the outcome of the CERN Research Board, that took place 16-Sep, after the positive recommendations from the SPS committee in June 2020. These tests will be an important milestone for the MADMAX collaboration. They will allow to realize and test the dielectric booster concept for the first time in a significant B-field. The prototype should be sensititive to ALPs (axion-like particles) in a mass domain around 100 μeV, as illustrated in the Figure. read more (external)


CPPM Logo
  • CPPM joins the MADMAX collaboration

    April 2020

    CPPM is now a full member of the MADMAX collaboration.


SHELL
  • Shielded Experimental Hall (SHELL) inaugurated

    July 2019

    The new Shielded Experimental Hall (SHELL) in Hamburg provides an electromagnetic quite laboratory for the BRASS experiment and MADMAX R&D. Using ferroconcrete walls with a thickness of 3m it shieldes electromagnetic radiation from outside, like radio stations, mobile phone signals, WiFi and others. read more (external)


Néel Logo
  • Néel Institute becomes associate member

    May 2019

    Néel Institute are developing Josephson junction-based pre-amplifiers that can work at 10-30 GHz and reach near quantum limited performance. Such amplifiers, if successfully integrated into MADMAX, can reduce the system noise temperature by ~50% and therefore significantly increase the overall sensitivity of MADMAX.


CPPM Logo
  • MADMAX Sensitivity Projection on EPJC Cover

    March 2019

    "The European Physical Journal C" (EPJC) has put our sensitivity projection on their journal cover page for March 2019. The MADMAX collaboration is very happy and wishs to thank the EPJC for this special honor.
    A new experimental approach to probe QCD axion dark matter in the mass range above 40μeV,
    MADMAX Collaboration, Brun, P., Caldwell, A. et al. Eur. Phys. J. C (2019) 79: 186. https://doi.org/10.1140/epjc/s10052-019-6683-x


CPPM Logo
  • CPPM Marseille becomes associate member

    February 2019

    CPPM Marseille has become associate member of the MADMAX collaboration. CPPM is currently looking into the possibility to help the MADMAX collaboration as a full collaboration member by investigating how the prototype booster can be scaled to its final size. CPPM has already taken over the task to characterizing the flatness of the individual prototype-booster disks to µm level.


The official MADMAX logo
  • Official Logo inaugurated

    May 2018

    On the 8th of May 2018 the MADMAX-Collaboration inaugurated their official logo, originally proposed by the group at the University of Tübingen. It outlines three dielectric disks in orange surrounded by the acronym MADMAX.


The MADMAX Collaboration
  • Founding of MADMAX (MAgnetized Disc and Mirror Axion eXperiment)-Collaboration

    October 2017

    On the 18th of October 2017 the MADMAX-Collaboration was founded. Founding Insitutes are the Max-Planck-Institut für Physik in Munich, the Universities of Aachen, Hamburg, and Tübingen in Germany the University of Zaragoza in Spain, the CEA-IRFU in Saclay, France, and the Deutsche-Elektronen-Synchrotron (DESY) in Hamburg.