

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DIELECTRIC HALOSCOPE AND THE MADMAX EXPERIMENT

XIAOYUE LI MAX PLANCK INSTITUTE FOR PHYSICS AXION COSMOLOGY, MIAPP, GARCHING FEB. 18, 2020

THE STRONG CP PROBLEM

The QCD Lagrangian contains a CP-violating term:

$$\mathscr{L}_{QCD} = \ldots + \frac{\alpha_s}{8\pi} \ \bar{\theta} \ G_{\mu\nu a} \tilde{G}^{\mu\nu}_{a}, \qquad \bar{\theta} = \theta_{QCD} + \theta_{Yukawa} \in [-\pi, \pi] \sim \mathcal{O}(1)$$

Neutron electric dipole moment

$$d_N \sim 10^{-16} \ \bar{\theta} \ e\text{-cm} < 3 \times 10^{-26} \ e\text{-cm} \Rightarrow \bar{\theta} < 3 \times 10^{-10}$$

- The Standard Model does not provide a reason for why $\bar{\theta}$ is so tiny, i.e. the strong CP problem.
- The Peccei-Quinn mechanism provides a reason for the value of $\bar{\theta}$ and predicts a light neutral pseudoscalar boson the axion.

THE PECCEI-QUINN MECHANISM

> Peccei-Quinn introduces a global U(1) $_{PQ}$ symmetry which spontaneously breaks

1 GeV $< T < f_a$ (PQ symmetry breaking)

- Axion potential $V_a(a/f_a)$ is minimized at $\bar{\theta} + \frac{a}{f_a} = 0$
- The axions produced by the "misalignment" mechanism are a good CDM candidate

T < 1 GeV (QCD phase transition)

CONSTRAINTS ON QCD AXION MASS

CDM AXION DIRECT-DETECTION

Axion-photon interaction:

$$\mathscr{L}_{a\gamma\gamma} = C_{a\gamma} \frac{\alpha}{2\pi f_a} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

$$\downarrow$$

$$g_{a\gamma} = 2.04(3) \times 10^{-16} \text{GeV}^{-1} \frac{m_a}{\mu \text{eV}} C_a$$

- ▶ CDM axions behave like a **classical wave**: $a/f_a = \theta = \theta_0 \cos(m_a t)$
 - E.g. $m_a \sim 100 \ \mu \text{eV}$, local galactic axion density $\rho_a = (f_a m_a)^2 \theta_0^2 / 2 = 0.45 \text{ GeV/cm}^3$

Axion de Broglie wavelength:
$$\lambda_a = \frac{2\pi}{m_a v_a} \gtrsim 10 \text{ m} (v_a \approx 10^{-3} c)$$

- Axion phase-space occupancy: $\mathcal{N}_a \sim n_a \lambda_a^3 = (\rho_a/m_a) \lambda_a^3 \sim 10^{22}$
- **Macroscopic** axion-Maxwell equation under external B-field:

$$\begin{cases} \nabla \cdot \mathbf{D} = \rho_f - g_{a\gamma} \mathbf{B}_e \cdot \nabla a \\ \nabla \times \mathbf{H} - \dot{\mathbf{D}} = \mathbf{J}_f + g_{a\gamma} \mathbf{B}_e \dot{a} \end{cases}$$

AXION HALOSCOPE

Axion induced electric field:

Local axion DM density

$$|\mathbf{E}_{a}| = \left| -\frac{g_{a\gamma}\mathbf{B}_{e}}{\epsilon} a \right| = 1.3 \times 10^{-12} \,\mathrm{Vm}^{-1} \times \left(\frac{B_{e}}{10 \,\mathrm{T}}\right) \left(\frac{\rho_{a}}{300 \,\mathrm{MeV/cm}^{3}}\right)^{1/2} \frac{C_{a\gamma}}{\epsilon} \longrightarrow \mathrm{Dielectric\ constant}$$

CAVITY HALOSCOPE

> At higher frequencies, cavities are increasingly difficult to build

DIELECTRIC HALOSCOPE (1)

Power emitted at a vacuum-to-perfect-conductor interface:

$$\frac{P_{sig}^{\gamma}}{A} = \mathbf{2} \cdot \mathbf{2} \times \mathbf{10}^{-27} \frac{\mathsf{W}}{\mathsf{m}^2} \left(\frac{B_e}{10 \mathsf{T}}\right)^2 C_{a\gamma}^2$$

DIELECTRIC HALOSCOPE (2)

"Axion-photon conversion caused by dielectric interfaces: quantum field calculation", A. N. Ioannisian, N. Kazarian, A. J. Millar, G G. Raffelt, DOI: 10.1088/1475-7516/2017/09/005

• In the
$$r^{\text{th}}$$
 domain
 $E_a^r = -A_r E_0$,
where $A_r = \frac{1}{\epsilon_r} \frac{B_{e,r}}{B_{e,max}}$,
 $E_0 = g_{a\gamma} B_{e,max} a_0$

Continuity conditions at each boundary

$$\begin{pmatrix} R_{r+1} \\ L_{r+1} \end{pmatrix} = G_r P_r \begin{pmatrix} R_r \\ L_r \end{pmatrix} + E_0 S_r \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \text{ wher}$$

$$G_r = \frac{1}{2n_r + 1} \begin{pmatrix} n_{r+1} + n_r & n_{r+1} - n_r \\ n_{r+1} - n_r & n_{r+1} + n_r \end{pmatrix},$$

$$P_r = \begin{pmatrix} e^{i\delta_r} & 0 \\ 0 & e^{-i\delta_r} \end{pmatrix},$$

$$S_r = \frac{A_{r+1} - A_r}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

A. Millar, G. Raffelt. J. Redondo, F. Steffen, JCAP 1701 (2017) no.01, 061

Transfer matrix between in and out EM waves Axion source terms $\begin{pmatrix} R_m \\ L_m \end{pmatrix} = T \begin{pmatrix} R_0 \\ L_0 \end{pmatrix} + E_0 M \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \text{ where}$ $T_a^b = G_{a-1}P_{a-1}G_{a-2}P_{a-2}\dots G_{b+1}P_{b+1}G_bP_b,$ $T = T_0^m \text{ , and}$ $M = \sum_{s=1}^m T_s^m S_{s-1}$

DIELECTRIC HALOSCOPE (3)

• A perfect mirror on the left

Reflectivity
$$R_R = \frac{R_m}{L_m} \Big|_{R_0=0} = \frac{T[1,2]}{T[2,2]}$$
,
Boost $\beta = \frac{R_m}{E_0} = M[1,1] + M[1,2]$

• Tolerance to disc positioning inaccuracy: $\sigma \ll 200 \mu m \left(\frac{10^2}{\beta}\right)^{1/2} \left(\frac{100 \mu eV}{m}\right)$ 20 discs, d = 1 mm, n = 5

~n

MAgnetized Disc and Mirror Axion eXperiment (MADMAX)

Power enhancement from coherent emission from and resonances between interfaces

$$\frac{P_{sig}^{\gamma}}{A} = 2.2 \times 10^{-27} \frac{W}{m^2} \left(\frac{B_e}{10 \text{ T}}\right)^2 C_{a\gamma}^2 \cdot \beta^2 \longrightarrow \text{Boost factor } \beta^2 \ge 10^4 \text{ achievable}$$

MADMAX BOOST FACTOR

Area law:
$$\int |\beta(\nu)|^2 d\nu \propto N$$

 Options for broadband and narrowband scans

Frequency is tuned by changing disc positions

OTHER DIELECTRIC HALOSCOPES

ADMX Orpheus

- Open cavity with evenly spaced dielectrics
- Dielectric media compresses wavenumber and prevent the form factor integral from dropping to zero

J. Jaeckel, J. Redondo, DOI:10.1103/PhysRevD.88.115002

M. Baryakhtar, J. Huang, R. Lasenby, PRD 98, 035006 (2018)

- More realistic simulations
- Frequency tuning in reality
- RF signal detection
- Other engineering challenges

S. Knirck, J. Schütte-Engel, *et. al.* DOI: 10.1088/1475-7516/2019/08/026

3D SIMULATION (1)

- A. Finite element method (FEM) w/ Comsol Multiphysics ® and Elmer
 - Axion-induced E field is implemented as an external current density: J_a(t) = g_{aγ}B_e ἀ(t)
 - Fewer underlying assumptions but time-consuming

- B. Recursive Fourier propagation method
 - Assumption: no charge accumulation, i.e. $\nabla \cdot \mathbf{E} = 0$

 $E_i(\boldsymbol{x}) = \int_{\mathbb{R}^2} \frac{dk_x dk_y}{(2\pi)^2} \mathcal{F}(E_i)(k_x, k_y)$ $\times e^{i|z-z_s|\sqrt{(\omega n)^2-k_x^2-k_y^2}}e^{ik_x x}e^{ik_y y}$

3D SIMULATION (2)

- C. Mode matching
 - If the booster mechanics have negligible effects, the booster can be regarded as similar to a dielectric waveguide

Eigenmodes w/ different field patterns and propagation constant

- Mode mixing can happen due to diffraction, tilted disc, etc.
- Three methods yield consistent results where comparison is possible

3D SIMULATION (3)

XIAOYUE LI (MPP) MIAPP FEB. 18, 2020

CRITICAL DESIGN PARAMETERS (1)

Disc surface roughness

$\sigma = 10 \,\mu m$, $\xi = 3 \,mm$ 0.20 - 30 0.15 20 0.10 0.05 Elevation [µm] 10 ۲ س] 0.00 0 -0.05-10-0.10-20 -0.15-0.20-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 x [m]

Correlation length 3 mm

Booster is forgiving to small-scale roughness

CRITICAL DESIGN PARAMETERS (2)

Correlation length 35 mm

- Disc flatness better than 5 μ m is desirable; 10 μ m is critical
- Effects on boost factor may be mitigated through measurement-based tuning

XIAOYUE LI (MPP) MIAPP FEB. 18, 2020

CRITICAL DESIGN PARAMETERS (3)

Disc tilting

For 1-m discs, disc tilting should be less than 0.1 mrad (100 μm)

- ▶ Non-ideal discs result in irregular beam shapes
 - How to efficiently couple such a beam into the receiver is under study

FREQUENCY TUNING

- Boost factor cannot be measured experimentally
- It can be inferred from measurements of the electromagnetic response such as the reflectivity, as it is strongly correlated with the boost factor

Group delay $\frac{\partial}{\partial \nu} \arg(\mathscr{R})$ maps out the resonances within the booster

Near frequencies that experience a large number of internal reflections, the phase of the reflected radiation changes rapidly.

20 discs, 1 mm-thick, $\epsilon = 25$

J. Egge, S. Knirck, et. al. arXiv:2001.04363

ANTENNA EFFECTS

Antenna-mirror efficiency

Assumption: adding discs does not significantly alter the beam shape

- Impedance mismatch between the antenna and free space
 - Included in simulation

More sophisticated antenna model is needed

REFLECTIVITY MEASUREMENT AND FREQUENCY TUNING

Proof-of-principle setup with 4 discs

1D model is used

Ripples due to the impedance mismatch at antenna aperture

- Challenges for frequency tuning
 - Absolute disc positions are not known
 - Key booster parameters such as the dielectric constant are difficult to measure precisely
 - Perfect simulation does not exist
- Theses issues can be mitigated by a *measurement-based tuning procedure*

DISC TUNING PROCEDURE

- 1. Adjust the disc spacings in the simulation to obtain the desired boost factor
 - Calculate the reflectivity, in particular the group delay, with the same configuration with calibrated antenna reflections included
- 2. Adjust the disc positions in the setup until the measured group delay matches that given by the simulation

XIAOYUE LI (MPP) MIAPP FEB. 18, 2020

DISC TUNING RESULTS

In order to quantify the disc spacing repeatability, repeat step 2 with different random starting positions ~200 times

UNCERTAINTY OF THE BOOST FACTOR DUE TO TUNING

Degenerate disc
 spacings →
 uncertainties on
 the boost factor

SYSTEM NOISE TEMPERATURE

SNR =
$$\frac{P_{sig}}{k_B T_{sys}} \sqrt{\frac{t_{scan}}{\Delta \nu}}$$
, where $T_{sys} = T_{rec} + T_{booster}$

 T_{rec} depends on receiver noise temperature and frequency

"Tools of Radio Astronomy", T.L. Wilson, K. Rohlfs, S. Hüttermeister, Fifth edition

Cold measurement of system noise temperature ongoing

SYSTEM NOISE TEMPERATURE

SNR =
$$\frac{P_{sig}}{k_B T_{sys}} \sqrt{\frac{t_{scan}}{\Delta \nu}}$$
, where $T_{sys} = T_{rec} + T_{booster}$

- T_{rec} depends on receiver noise temperature and frequency
- Kirchhoff theorem: $T_{booster} = \epsilon \cdot T_{physical}$
 - Emissivity $\epsilon = 0$ for perfect electrical conductor, $\epsilon = 1$ for perfect blackbody
 - *ϵ* can be reduced by choosing low tan δ loss material for the discs and low loss metal for the mirror
 - Booster ϵ has frequency dependence

Cold measurement of system noise temperature ongoing

RECEIVER CHAIN

Below 40 GHz linear amplifier most suitable

TRAVELING WAVE AMPLIFIER

Quantum limit of coherent detectors:

 $k_B T_{rec} = h\nu N_A$, where $N_A \ge \frac{1}{2}$

- Broadband traveling wave JPA could potentially halve system noise temperature for MADMAX
 - Josephson junction nonlinear inductance
 - GHz bandwidth
 - High 1-dB compression point
 - No need to tune frequently
 - 10-40 GHz possible with the current fabrication technology
- Testing of ~12 GHz device this summer

L. Planat, et. al. arXiv:1907.10158

DIELECTRIC DISC

- Discs are 1.25 m in diameter and 1mm in thickness
- Candidate materials:
 - ► LaAIO₃
 - $\epsilon \approx 24$
 - $\tan \delta = a$ few $\times 10^{-5}$
 - Only grown on 3" wafer; tiling needed for 1 m² discs
 - Sapphire
 - $\epsilon \approx 9$ (C-cut)
 - $\tan \delta \approx 10^{-5}$
 - Up to 20"
- Other possible candidate materials are being explored

DISC CHARACTERIZATION

- Tiled disc surface is measured
 - Feedback to tiling process

- Literature values for LaAlO₃ not available at 10 to 100 GHz and/or not down to 4 K
- Highly dependent on manufacturing process

CPPM Marseille

 ϵ and $an\delta$ measurements @ UHH

MAGNET DESIGN STUDIES

- ▶ $B^2 \cdot A \sim 100 \, \text{T}^2 \text{m}^2$ magnet has never been built before
- Working with innovation partners and an expert committee
 - ▶ NbTi coil, 9 T field, 1.25 m² aperture, ~5% inhomogeneity, 480 MJ stored energy
- Conceptual design available since 2019; the first coil may be delivered by 2021; full magnet to be commissioned by 2025

TIMELINE OF MADMAX (with abundant optimism)

Prototype detector data taking

PROTOTYPE

- Aim to construct and commission prototype booster by 2022
 - 20 LaAlO₃ discs with 30cm diameter; laser interferometer incorporated
 - Hammer out the mechanical design
 - Hidden photon/ALP search $\sim 80 \ \mu {\rm eV}$
- Development and testing of piezo motors are ongoing
 - 4 K, ~9 T, long travel range, 6 kg load bearing

MADMAX BASELINE DESIGN

Full-scale detector

XIAOYUE LI (MPP) MIAPP FEB. 18, 2020

DESY SITE

- Final MADMAX detector will be located at HERA Hall North
- Make use of DESY infrastructure
- Reuse H1 yoke

MADMAX SENSITIVITY

Prototype detector 3 months

Assuming 50% of obtainable power from 1D simulation is received; 5σ detection level

SUMMARY AND FUTURE PROSPECT

- > The MADMAX experiment aims to search for QCD axions in the form of local CDM in the well-motivated mass range of $40 \sim 400 \ \mu eV$
 - Microwave signal at $10 \sim 100 \text{ GHz}$
 - Novel dielectric haloscope to boost axion signal to a detectable level
 - Design R&D and simulation studies are on going
 - Aim for data-taking in 2025

THE CHALLENGES

- Booster physics
 - Realistic simulations of axion signal and EM measurements
 - System noise temperature
 - Coupling of axion signal to receiver via antenna or taper
 - Other EM measurements to constrain boost factor?
- Frequency tuning of 80 discs
- Implementation of quantum limited amplifier below ~40 GHz
- Novel detection technology needed above ~40 GHz
- Engineering challenges
 - ▶ 100 T²m² dipole magnet
 - Disc driving mechanism at 4K, 9 T, ~1 m driving distance, µm precision, 6 kg load bearing
 - Large dielectric discs with sufficient flatness, high ϵ , low tan δ

XIAOYUE LI (MPP) MIAPP FEB. 18, 2020

MAgnetized Disc and Mirror Axion eXperiment

DIELECTRIC LOSS

AXION VELOCITY EFFECT

DM AXION DENSITY

Cosmic string +

FROM AXION SEARCHES TO AN AXION TELESCOPE

xion DM field
$$a(\mathbf{x}, t) \approx \frac{\sqrt{2\rho_a}}{m_a} \cos(\omega t - \mathbf{p} \cdot \mathbf{x} + \alpha)$$

 $\boldsymbol{\omega} = m_a \left(1 + \frac{v^2}{2}\right)^{\mathbf{z}}$ $\mathbf{p} = m_a \mathbf{v}$

[A.J.Millar, J.Redondo, F.D.Steffen, JCAP1710, 006, arXiv:1707.04266]

A VISION FOR THE FAR FUTURE: AXION ASTRONOMY

Key: axion phase differences across large exp. + rotation of the Earth

- measure the daily and annual modulation (and solar velocity)
- measure the anisotropy of the DM halo
- measure a stream (and mini cluster streams)

[S.Knirck, A.J.Millar, C.A.J.O'Hare, J.Redondo, F.D.Steffen, JCAP1811, 051, arXiv:1806.05927]