

MADMAX

Towards a Dielectric Axion Haloscope

Christoph Krieger Universität Hamburg

On behalf of the MADMAX Collaboration

12th December 2022 2nd DMLab Meeting DESY Hamburg

Axion Parameter Space

The Axion:

- Pseudo Nambu-Goldstone boson
- Small mass and small couplings
- Connected to solution of the strong CP problem
- Primakoff/Sikivie effect: Photon-Axion conversion in strong EM fields
- Axion can explain (part of)

Cold Dark Matter

Axion Parameter Space

Whiversität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

The Axion:

- Pseudo Nambu-Goldstone boson
- Small mass and small couplings
- Connected to solution of the strong CP problem
- Primakoff/Sikivie effect: Photon-Axion conversion in strong EM fields
- Axion can explain (part of)

Cold Dark Matter

Dielectric Haloscope

In an external magnetic field B_e the axion field a(t) sources an oscillating electric field E_a

$$E_a \cdot \epsilon \sim 10^{-12} \text{ V/m for } B_e = 10 \text{ T}$$

 E_a is different in materials with different ε

At the surface, E_{\parallel} must be continuous

→ Emission of electromagnetic waves

Power emitted from a single surface:
$$P/A = 2.2 \cdot 10^{-27} \frac{W}{m^2} C_{a\gamma} \left(\frac{B}{10 \text{ T}}\right)^2$$

Dielectric Haloscope

Boost emitted power through:

- coherent emission from multiple interfaces
- constructive interference effects

Power boost factor:

$$\beta^2 = \frac{P_{\text{total}}}{P_{\text{mirror}}}$$

Power emitted from all interfaces: $P/A = 2.2 \cdot 10^{-27} \frac{W}{m^2} C_{a\gamma} \left(\frac{B}{10 \text{ T}}\right)^2 |\beta^2|$

Dielectric Haloscope

• In perfect world (1D simulation):

 $|\beta^2| > 10^4$ achievable with 80 discs and $\varepsilon = 24$

- Non-uniform disk spacing of $\sim \lambda/2$ can achieve broadband response
- Tuning of sensitive frequency range by adjusting disc spacing

• Area law: $\beta^2 \Delta v_\beta \sim \text{const.}$

The MADMAX Experiment 1

MAgnetized Disc and Mirror Axion eXperiment

MADMAX Magnet Update

MACQU

Development in innovation partnership

BILFINGER **NOELL GMBH**

Dipole Magnet most critical item for full-size MADMAX

- Design for 9 T large bore conceptually very well advanced
- **Novel conductor: cable in copper conduit**
 - → production is feasible
- Quench propagation velocity was measured in dedicated setup: MAdmax Coil for Quench Understanding

→ Main project risk mitigated: Quench propagation according to requirements for safe operation

Designated Experimental Site J\\AL

- MADMAX to be operated at HERA Hall North
- Make use of DESY infrastructure
 - → Cryoplatform to be operational in 2025
- Benefit: re-use H1 yoke as magnetic shielding

Time Scale

The MADMAX Prototype

- Scaled-down version of MADMAX:
 - Reduced number of discs
 - 1/16 disc area
 - 1/5 magnetic field
- Main goal #1: Demonstrating and prototyping key technologies
- Main goal #2: Competetive ALP search with a dielectric haloscope

Prototyping the Booster

Laser interferometer couplers

- Booster is the heart of MADMAX
- Need to manipulate many large area discs with precision < 10 μm
- Operating conditions:
 - Cryogenic temperatures: 4 K
 - High magnetic field: up to ~10 T
 - Vacuum or cold gHe exchange gas
- Long travel range
- Disk weight: 600 g for Ø300 mm
- ➤ Piezo-driven actuator system with feedback from laser interferometer with absolute precision
- Candidate disk materials:
 - LaAlO₃ (ε ≈ 24, tan δ ≈ a few 10⁻⁵)
 - Sapphire (ε ≈ 9, tan δ ≈ 10⁻⁵)
- LaAlO₃ available as 3" wafers at maximum
- Tiling necessary Semi-automatic gluing machine

Testing the Disk Drive

- Motor developed by company JPE
- Motor successfully tested at RT and 4 K
- Begin of 2022 test in ALPS II magnet
 - → Motor works in 5.3 T field and at 5 K

Laser interferometer

Piezo controllers

- Project200 built as mechanical demonstrator
- Three JPE piezo actuators on self-built carriages
- Piezo controller system for driving a disc with three motors
- Attocube laser interferometer for displacement measurement
- Single 200 mm sapphire disk in titanium disc ring can be mounted

Single motor test rig

ALPS II magnet test stand

Testing the Disk Drive

Closed Booster System

- Simple closed system to understand behaviour
- Can be operated at cryogenic temperatures
- Hidden Photon search and ALP search with Closed Booster 100
- Receiver
- Parabolic taper
- 3x Ø100 mm sapphire disks (fixed distances)
- Copper mirror

Boost Factor Calibration

- Measurement of thermal noise & RF response (reflectivity and/or group delay)
- Match model to reproduce measured quantities
- Extract boost factor from model

Axion Like Particle Search

- Opportunity to perform ALP search in CERN's
 Morpurgo magnet (1.6 T) was used in Mar/Apr 2022
- In total 10 h at 1.6 T with ~ 200 K noise temperature
- Sensitivity not dominated by RFI in CERN North Hall
- Possibilities for an upgrade allowing to cool the setup to < 10 K in Morpurgo currently in preparation

Receiver Chain

- Receiver chain with low-noise amplifier and three mixing stages
- Amplifiers for high frequencies developed: TWPAs for < 30 GHz

Test setup at MPP with 4 samplers and fake axion injection: Detection of 1.2×10^{-22} W signal within few days

Low-noise cryogenic amplifier (noise temperature 5 to 6 K)

Quantum-limited Amplifier 1

- Traveling wave parametric amplifier (TWPA)
- First 10 GHz TWPA produced (PRX 10, 021021)
- Added noise: 1 K above quantum limit (20 dB gain @ 10 GHz)
- Future development to 30 GHz

[Reversed Kerr TWPA arXiv:2101.05815]

MADMAX Sensitivity

MADMAX:

$$N_{\mathrm{dis}c} = 80$$

 $A_{\mathrm{dis}c} = 1.2 \,\mathrm{m}^2$
 $B_{\parallel} = 9 \,\mathrm{T}$
 $T_{\mathrm{sys}} = 8 \,\mathrm{K}$

Summary & Outlook

- **MA**gnetized **D**isk and **M**irror **A**xion e**X**periment: dielectric haloscope to detect post-inflationary DM axions
- Continue work on analysis & calibration of Closed Booster 100
- Commissioning of full-size MADMAX at DESY in HERA Hall North starting (earliest) in 2028 with the huge magnet
- Commissioning of MADMAX Prototype to start in 2023
 - → First operation at CERN during YETS 2024/25

FÜR RADIOASTRONOMIE

TÜBINGEN

MADMAX Collaboration Meeting September 2022 @ Hamburg

