AD MAX **Post-inflationary** axion dark matter search

Chang Lee for the MADMAX Collaboration Max Planck Institute for Physics

NDM-2020 Jan. 12th 2020

MAX-PLANCK-INSTITUT FÜR PHYSIK

• CP symmetry appears broken.

matter >> anti-matter

• QCD has a CP-violating term:

$$\mathscr{L} = -\frac{\theta}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a,$$

• However, $|\theta| < 1.3 \times 10^{-10}$ from the neutron EDM measurement. PRL 97 131801 (2006)

Jan. 12th, 2020, NDM, Hurghada, Egypt

The strong CP-problem

e+

 $-\pi < \theta < \pi$

- Promote θ into a dynamic **field**: $\theta \rightarrow a(t,x)$.
 - Axion: fluctuation of a field around zero.
 - Inflation: $\theta \rightarrow 0$
- Explicit symmetry breaking by QCD at *f*_a: Axion acquires **mass!**
- **Relic Axion**: compelling candidate for Cold Dark Matter.
 - Feeble EM interaction, cold, long lifetime

http://esuhai.com/upload/fck/image/BAN%20BIEN%20TAP/ bang%20tin%20kaizen/ban%20tin%2097/25.jpg

Pre-Inflation

 $? < m_a < ~1 meV$

Jan. 12th, 2020, NDM, Hurghada, Egypt

PQ symmetry breaking after inflation m_a ~ 100 μeV

JCAP **2017**, 049–049 PRD **91**, 065014

Dielectric haloscope Principle

Primakoff interaction

- Axion couples to a EM field: $\mathscr{L} = g_{\alpha\gamma} a \overrightarrow{E} \cdot \overrightarrow{B}$
 - Axion converts into a EM field inside a magnetic field
- The product EM wave has a frequency: $\hbar \omega = m_a c^2$
 - CDM: monochromatic

• Add more dielectric disks

Jan. 12th, 2020, NDM, Hurghada, Egypt

• $P_{sig} \propto B_e^2 A \beta^2$ boost factor

A. J. Millar et al JCAP01(2017)061, Phys. Rev. Lett. 118, 091801 (2017)

Jan. 12th, 2020, NDM, Hurghada, Egypt

Receiver

• more coherent sources + constructive interferences

- Large single volume
- Approach QCD sensitivity: $\beta^2 > 20,000$ possible
- Frequency tuning: Disk spacings control $\beta(f)$.

MADMAX: Intro and status

Jan. 12th, 2020, NDM, Hurghada, Egypt

AX

RWTH Aachen, MPI for Radioastronomy, Institut NEEL, DESY, Univ. of Hamburg, CPPM, MPI for Physics, CEA-IRFU, Eberhard-Karls-Univ. at Tübingen, Univ. of Zaragoza,

15

Chang Lee

Full MADMAX

Piezo motor + laser interferometer for disk placement

- European Innovation partners: **CEA Saclay and Bilfinger Noell**
- FoM: B²A = **100 T²m²**

Jan. 12th, 2020, NI

0.00 X [m]

0.50

1.00

1.50

480 MJ!

-1.50

-1.00

-0.50

-1.50 -

17

0.00

MADMAX: Intro and status

- Axion experiments in DESY: ALPS II, IAXO, BRASS
- MADMAX occupies H1 North hall
 - Existing infrastructure, H1 magnet yoke
- Strong recommendation from recent **DESY Physics Review Committee**
 - "The review committee enthusiastically endorses the physics goals of the MADMAX proposal... We recommend approval of the phase II of the project", Nov. 2019

Site

MADMAX: Intro and status

Jan. 12th, 2020, NDM, Hurghada, Egypt

Prototype, $\Delta \nu_{\beta} \sim 50$ MHz (benchmark)

MADMAX: Intro and status

1.6 T @ CERN

2021

2023

2020

Jan. 12th, 2020, NDM, Hurghada, Egypt

Chang Lee

Time line

2026 Full MADMAX starts

Magnet delivered

2024 Prototype data taking

Full system design complete

CERN Morpurgo magnet available

2025

Prototype design complete, begin fabrication

Conclusion

- Post-inflation axion around **100 µeV** is a well-motivated dark matter candidate.
- **Dielectric haloscope** is a promising technology.
- MADMAX experiment is developing.

Jan. 12th, 2020, NDM, Hurghada, Egypt

Chang Lee

JCAP01 (2017) 061 PRL 118, 091801 (2017) EPJC (2019) 79:186

Thank you

Broadband advantages

- "Resonant" setup is possible, but **not practical.**
- Broadband benefits include
 - Easier & less frequent tuning
 - Scan multiple channels: ~3,000 m_a channels
 - "Box-shape" more optimized than "Lorentzian"

Broadband advantages

- Broadband boost factor tolerates more
 - Mechanical precision: $\delta d \propto \frac{\lambda}{O}$.
 - ambient vibration
 - ε variation
 - Loss inside material & setup

Jan. 12th, 2020, NDM, Hurghada, Egypt

Boost

- Disks + mirror **boosts** signal by $\beta = E / E_0$
- Transparent mode: δ = n x d x v = π, 3π, 5π... constructive interference.
- Resonant mode: δ = π/2, 3π/2, ...disks + mirror forms a leaky resonator.
- Combined boost from both contributions.

Jan. 12th, 2020, NDM, Hurghada, Egypt

• Scan speed

$$\frac{t_{scan}}{\Delta \nu} = \left(\frac{S}{N}\right)^2 \left(\frac{k_B T_{sys}}{P_{sig}}\right)^2$$

- However, **Area Law:** $P_{sig} \times \Delta v$ is independent of disk spacings.
 - Narrower peak leads to faster scan.
- In practice, tuning time is \bullet significant t_{tot_adj} ≈ t_{tot_scan}.

Scan strategy 140 $\Delta \nu_{\beta} = 200 \text{ MHz}$ same area 120 [100 - $\Delta \nu_{\beta} = 50 \text{ MHz}$ 80 \mathcal{O} 60 F 40 F 20 E 24.8 25.0 25.1 25.2 24.7 24.9 25.3 ν [GHz] 140 🏳 120 100 80 - \mathcal{O} 60 F 40 F 20 -0 25.4 25.2 24.8 25.0 25.6

 $\nu \, [\mathrm{GHz}]$

MADMAX: Intro and status

Jan. 12th, 2020, NDM, Hurghada, Egypt

Disk positioning

- Bring the disks to approximate position.
- 2. Measure the group delay.
- 3. Compare 2 with the desired (simulated) group delay.
- 4. Minimization algorithms suggest the next moves.
- 5. Move the disks. Repeat 2-5.
- 6. Stop if the move is less than $1\mu m$.

Jan. 12th, 2020, NDM, Hurghada, Egypt

~10 min, mostly computation

More accurate than independent measurements

- Technological test platform
- 4 K, 1.6 T field
- ALP search ~80 µeV (10⁻¹²)
- LOI handed in to CERN

Dielectric Haloscope: 20 x *φ*30-cm sapphire disks

Jan. 12th, 2020, NDM, Hurghada, Egypt

Motors inside rings

Prototype Magnet

- Morpurgo magnet @ CERN
- 1.6 T dipole, 1.6-m warm bore (1.45m usuable)
- and Dec. 2022 to Mar 2023.

Jan. 12th, 2020, NDM, Hurghada, Egypt

• Available after SPS winter shutdown from Dec. 2021 to Mar. 2022

- High ε , low tan δ Current best: LnAlO₃ ($\epsilon \sim 23.4$)
- Single crystals have lowest tan δ , but diameter < 3 inches \rightarrow tiling??
- Discontinuous ε significantly distorts the beam shape & boost factor.
- Polycrystalline LnAlO₃ has a higher tan δ , and can be casted.
- SiO₂ will be the default for the prototype detector

