

How to detect a QCD axion with MAD MAX

Juan P.A. Maldonado

On behalf of the MADMAX collaboration

EBERHARD KARLS

TUBINGEN

Motivation for MADMAX

Latest news: Run at CERN and monitoring system New cryostat MADMAX new magnet update

Next steps: Cold operation of CB-100 The next prototype Main cryostat

The MADMAX experiment

Idea:

 Induce inverse Primakoff effect in a strong external B field

The MADMAX experiment

Idea:

- Induce inverse Primakoff effect in a strong external B field
- 2) Boost the signal using spatiallyperiodic dielectric discontinuities

The MADMAX experiment

Idea:

- Induce inverse Primakoff effect in a strong external B field
- 2) Boost the signal using spatiallyperiodic dielectric discontinuities
- Reduce thermal background with cryogenics
- 4) Analyze boosted signal

Status of axion experiments

Aspirational setup

Probing the QCD axion between 40-400 μeV

Morpurgo magnet: 1.6 T dipole field

- CB-100 at room temperature
- ~10 hours integration time

Data analysis ongoing

Successful test: booster in magnet running continuously

Monitoring system

24/7 experiment monitoring

- Noise gaussianity
- Frequency dependent linearity
- Magnetic field
- Overheating
- Allan variance and total integration time
- Shifters incorporated
- E-mail alarms for urgent action (B field off, DAQ frozen, etc.)

Boost factor determination

Additional setup to determine β^2 by direct measurement of the field

Before: Only data-tuned simulations

Now: measurement also possible via bead-pull method

J. Egge (MADMAX): "Reciprocity approach" <u>https://iopscience.iop.org/article/10.1088</u> /1475-7516/2023/04/064 10

MADMAX magnet update

- Dipole Magnet most critical item for fullsize MADMAX
- Cable in conduit conductor (CICC) with a copper matrix
 production is feasible
- Quench propagation velocity was measured in dedicated setup
 → Main project risk mitigated: Quench propagation according to requirements for safe operation

IEEE Transactions on Applied Superconductivity vol. 33 Issue 7 (2023) 1-11

Next steps

Next prototype: CB-200

Gain in sensitivity of ~40%

Cold (4K) run with CB-100

Gain in sensitivity of ~1 order of magnitude

For more information see poster "Towards a cryogenic calibration of a dielectric haloscope for direct dark matter detection" – Juan PA M.

Plans for 2024-2025

Main cryostat

- Delivery expected beginning of 2024
- Commissioning site: Hamburg
- Planned ALP search at CERN in 2025

Tested at

CERN cryolab

Stability reached: 24 hours at 10K

CERN

- MADMAX will search for axions between 40-400 μ eV
- First runs with CB-100 at 300K done; data analysis ongoing
- Magnet feasibility confirmed
- Prototype cryostat soon to be available
- G10 cryostat tested and ready to use inside magnet
- First cryogenic operation intended for 2024 at CERN. Upgrade of the prototype also planned for 2024