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Abstract - The axion has emerged as a prime candidate for cold dark matter
and as a solution to the strong CP problem. As a novel approach the MADMAX
experiment uses axion-photon conversion on dielectric interfaces in strong magnetic
fields and aims to cover a possible axion mass range of 40 - 400 µeV, corresponding
to a photon frequency range of 10 - 100GHz. This work revisits foundations for
optimizing the experiment’s control parameters on a physical prototype and improv-
ing and streamlining the process for the future. Similar prototypes exist at other
collaborative institutes, the installation at RWTH Aachen University was performed
during this thesis. One result is a software package providing a combined interface
to all components and tools for automation of the laboratory equipment. Several
optimization algorithms, namely the Nelder-Mead method, simulated annealing and
some linesearches, are explored and tailored to this specific problem. The fact that
the system’s response to a real axion field is unknown presents a major challenge.
It has to be substituted by a different measure of system response such as the elec-
tromagnetic reflectivity. The algorithms are tested with analytical simulations and
directly on the prototype.
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Preface

This thesis is a continuation of my previous work on the optimization software for
the MADMAX experiment. I intend for it to be a comprehensible guide for general
optimization on MADMAX, and more specifically, the resulting software.

https://github.com/bergermann/Dragoon.jl aims to mimic an optimization on
a real experimental setup, both virtually and physically.

https://github.com/bergermann/JuXIMC.jl provides an interface to the labo-
ratory hardware, i.e. motors and measurement devices.

Both packages are written with the Julia programming language [1, 2] (version 1.9.2).

Vectors in this work are denoted by bold letters, x, and matrices in sans-serif, A.
Underlined natural numbers express the set n = {1, 2, ..., n}.
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1 Introduction

This first chapter quickly touches upon the theoretical development and astrophysical
discoveries that provoked dark matter searches to set the motivation of the experiment
and this thesis.

1.1 Strong CP problem and cold dark matter

During the development of Quantum Chromo Dynamics (QCD), the absence of an-
other light state in the hadronic spectrum besides the pion led physicists to conclude
that there was no U(1)A symmetry in strong interactions [3]. The reason for the
missing symmetry was found to be a more complex vacuum structure in QCD [4]. A
correction to the vacuum then yielded an additional term to the Lagrangian [5]:

Lθ = θ
g2

32π2
F µν
a F̃aµν . (1.1)

F µν
a , F̃µνa =

1
2
ϵµναβF

αβ
a are the QCD field tensors, g the QCD coupling constant and

the so-called θ-angle remains a free parameter. For values of θ ̸= 0 this term violates
time and parity symmetries but is invariant for charge reversal; hence it is breaking
the CP symmetry. A priori, every value of θ seems possible [6], but measurements
of the vanishing neutron dipole moment |dn| < 3 · 10−26 [7] imply θ < 10−9 [8]. The
seemingly arbitrary absence of CP violation in the strong interactions is known as
the strong CP problem.

Key astronomical observations such as gravitational lensing (e.g. bullet cluster [9])
and rotation curves of galaxies [10] strongly suggest a gravitational pull of unknown
origin beyond that of visible matter. Astrophysicists suggested a new type of matter
called dark matter to be the source of this force [11]. It would need to be non-
electromagnetically interacting to a measurable degree (hence dark) and account for
∼85% of the universes matter in the standard ΛCDM1 model [12]. Dark matter is
suspected to form large so-called halos around galaxies, reaching far beyond their
visible extents [9].

1Cold Dark Matter – cold meaning non-relativistic speeds/energies.
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1.2 The axion as a solution to both

In 1977 Helen Quinn and Roberto Peccei presented a solution to the strong CP prob-
lem by the addition of a chiral symmetry [13]. This symmetry is associated to a new
pseudoscalar boson – nowadays known as the axion – extremely weakly interacting,
long lived and very light [5]. It can be understood as an excitation of the axion field
with expectation value 0. Furthermore, axions can be used in a cosmological context
to sustain the effects attributed to dark matter. Unlike ordinary cold dark matter,
axions can also account for the alignment of cosmic microwave anisotropy multipoles
[14]. Axions could have been produced abundantly during the big bang [15] and pos-
sibly in stellar plasma [16].

A prime principle of axion detection is the Primakoff effect, which is responsible
for axion-photon conversion in strong magnetic fields. This may for example be ex-
ploited to produce axion-induced radiation in cavities, or ‘shine light through walls’
with a forth-and-back conversion [17].

In combination, the axion embodies a very well motivated candidate for particle
searches, but the small coupling constants paired with a large parameter space present
major challenges. Prominent experiments for axion search include IAXO (helioscope,
solar axions) [18] and ADMX (haloscope, galactic axions) [19].

1.3 MAgnetized Disc and Mirror Axion eXperi-

ment

The MADMAX experiment is a novel cavity approach to axion detection, where di-
electric discs are placed in parallel in front of a metallic mirror. An antenna is situated
on the opposing end with an optional metallic focusing mirror in between. A strong
magnetic field is created around the setup. The contraption is then cooled to cryo-
genic temperatures and evacuated for noise reduction [20, 21]. Schematic views of
the concept are shown in figs. 1.1 and 1.2.

Axions are intended to be converted to an electric field which emits photons from
the disc surfaces due to boundary conditions on dielectric interfaces. Through in-
terferences, the signal is enhanced for certain frequencies. MADMAX is expected
to be sensitive for axions in the mass range of 40 - 400 µeV, which corresponds to
about 10 - 100GHz in induced radiation. Fig. 1.3 shows a projection of the covered
parameter space in terms of axion mass to axion-photon coupling constant. In order
to reach the desired sensitivity, the magnetic field should reach for up to 10T in
field strength. The disc material should feature a high relative dielectric constant ϵ
and a small dielectric loss factor tan δ. Interesting candidates are sapphire (Al2O3,
ϵ ≈ 9.4, tan δ ≈ 10−5 − 10−4 [22]) and lanthanum aluminate (LaAlO3, ϵ ≈ 24 − 25,
tan δ ≈ 10−6 [23]). A first milestone is a prototype with 20 discs of 30 cm diameter,
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Figure 1.1: Schematic sideview of the MADMAX setup. A metallic mirror (left) and
an antenna (right) enclose a stack of dielectric discs (left) surrounded by a strong
magnetic field. From [20], fig. 1.

the full setup aims to have 80 discs with an area of ∼1m2 (≃̂1.1m in diameter) [21].

The key feature of MADMAX is that all discs are movable along the length of the
experiment. This allows it to focus constructive interference to certain frequencies
and thus amplify the axion induced signal – this amplification will be referred to
as the boost factor 2. The boost factor is the figure of merit for MADMAX, as it
dictates whether the signal can be boosted to a measurable regime. Furthermore, by
moving the discs slightly out of resonant positions, the amplification can be spread
across frequency ranges of certain sizes. This feature is very important to achieve a
realistic time schedule considering the large sensitivity range. The positioning and
control of the discs to achieve the desired boost factor response is to be treated as an
optimization problem and will be the topic of this thesis.

2More precisely, the boost factor is the relative power registered by the antenna w.r.t. axion-
induced emission on the mirror surface.
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Figure 1.2: Similar to fig. 1.1, with additional components such as the focusing mirror
(orange), a magnet (red) and a cryo/vacuum chamber (gray). From [21], fig. 8.

Figure 1.3: The projected sensitivity, i.e. potential discovery area of MADMAX and
a select few other detectors in terms of the axion-photon coupling constant gaγ and
the axion mass. From [21], figure 9.
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2 Physical principles

This chapter will give a short overview of axion theory and effects relevant to the
experimental concept, along with a very brief description of vector network analysis.

2.1 The axion

“In the standard model (SM) of particle physics, violation of CP in the strong in-
teractions is controlled by just one parameter, the θ angle. This angle appears as
the sum of two contributions with a priori unrelated origins: the angle defining the
vacuum of QCD, θQCD, and the common phase of the quark mass matrix, ArgDetMq,
related to the Yukawa couplings of the Higgs sector. Observable effects derive only
from this combination. When we redefine quark fields to make their masses real, the
phase appears as the coupling constant of the topological charge density operator of
QCD, i.e., the SM Lagrangian contains a term

αs

8π
θF̃ µν

a Fµνa ≡
αs

2π
θEaBa (2.1)

which violates parity, time-reversal and thus CP. a = 1, ..., 8 denotes the color index
[...], and Ea and Ba the illustrative chromo electric and chromo magnetic fields, re-
spectively. If θ is interpreted to be a dynamical field, [the vacuum energy density]
VQCD(θ) becomes the potential energy of that field so that the expectation value ⟨θ⟩
will be dynamically driven to zero, explaining the absence of CP violation. This mech-
anism relies on a global U(1)PQ symmetry that breaks spontaneously at the PQ scale
fa. A model-independent consequence is that excitations of θ(x) around the minimum
of the potential represent a new particle, the axion. The dynamical θ(x) field needs a
kinetic term f 2

a (∂µθ)(∂
µθ)/2. The axion field is the canonically normalized version of

θ, a(x)fa. Values of fa ≤ 108GeV are excluded experimentally and astrophysically,
so the axion offers a window to discover physics at ultra-high energies not testable
by current accelerator techniques. The cancellation of ⟨θ⟩ is dynamical, leading to
residual oscillations of θ around the minimum, which are expected for generic initial
conditions. As the age of the universe is finite, these oscillations are quasi-classical
field oscillations that could constitute today’s cold dark matter referred to at the
realignment mechanism.

The axion mass is given by

ma = 5.70(6)(4)µeV
(
1012GeV

fa

)
, (2.2)
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where the numbers in brackets denote the uncertainty in the last digit, dominated
by the uncertainty in the up-down quark mass ratio (first bracket) and higher order
effects (second bracket). The interaction of the axion with electric fields E and
magnetic fields B is given by the Lagrangian density

Laγ =
α

2π
Caγ

a

fa
E ·B with Caγ = 1.92(4)− E

N
, (2.3)

the fine structure constant α, and the model-dependent ratio of the electromagnetic
and colour anomalies E/N of the Peccei-Quinn symmetry.”1

For the non-relativistic axions MADMAX is designed for (i.e. va ≲ 10−3c), the
deBroglie wavelength

λdB =
2π

mava
= 12.4m

(
100 µeV

ma

)(
10−3

va/c

)
(2.4)

is large compared to the proposed experimental setup. With a thus justified approxi-
mation of the axion field as homogeneous, the local axion field oscillating with angular
frequency ω = ma is given as

a(t) = a0e
−imat, (2.5)

where a0 is some amplitude given by the local axion dark matter density

ρa =
m2

a|a0|2

2
= fDM

300MeV

cm3
. (2.6)

fDM is introduced as a fudge factor and represents uncertainty in the local dark matter
density. The axion-photon coupling constant is related to the color anomalies by

gaγ = − α

2πfa
Caγ = −2.04(3) · 10−16GeV−1

(
ma

1 µeV
Caγ

)
, (2.7)

which also relates it to the Peccei-Quinn scale and thus the axion mass [20].

2.2 Axion-induced electrical field

The working principle of dielectric haloscopes as axion detectors stems from the elec-
tric current induced by eq. (2.3) in the Ampère-Maxwell equation as

∇×B − ϵĖ =
α

2π
CaγBθ̇, (2.8)

where ϵ is the relative permittivity – from now on dielectric constant or simply dielec-
tricity – of the medium2 [20, 24]. Coupled then with a strong, homogeneous external
magnetic field Be eq. (2.8) solves to [20]

Ea(t) = − α

2πϵ
CaγBeθ(t) = −gaγBe

ϵ
a(t) = −E0

ϵ
e−imat, (2.9)

1From [21], section 2: Theoretical motivation.
2Relative permeability µ assumed to be 1.
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where E0 := gaγBea0, E0 = |E0| = |gaγBea0| and eq. (2.7) was used for the second
relation. The limit va = 0 implies a static field, i.e. wave vector ka = 0 and Ba = 0,
to solve the homogeneous Maxwell equations.

With the introduction of a dielectric interface, i.e. a discontinuity of ϵ by a sec-
ond medium, boundary conditions need to be satisfied by the overall electromagnetic
field. As an approximation to the finite size case of a dielectric disc we start with the
derivation for an infinitely large, flat interface between two media of different dielec-
tricities ϵ1, ϵ2, normal to ex and parallel to Be. The standard continuity conditions
at an interface

E||,1 = E||,2, H||,1 = H||,2 (2.10)

apply, simplified with the aforesaid assumptions [25]. We further assume that both
media have negligible magnetic response and thus Be,1 = Be,2 = Be. In order to
satisfy eq. (2.10), propagating waves (denoted with subscript γ) have to be intro-
duced, which are governed by k×Hγ + ωϵEγ. They propagate perpendicular to the
interface with the wave number k = nω, where n =

√
ϵµ =

√
ϵ is the refractive index.

Thus Hγ = ±nEγ and with Ha = Ba/µ = 0 the magnetic continuity is satisfied
immediately with Hγ,1 = Hγ,2. By superposition of Ea and Eγ, we arrive at

−n1Eγ,1 = n2Eγ,2 (cont. of H||), (2.11)

Eγ,1 + Ea,1 = Eγ,2 + Ea,2 (cont. of E||), (2.12)

which is solved to [20]

Eγ,1 = +(Ea,2 − Ea,1)
n2

n1 + n2

, (2.13)

Eγ,2 = −(Ea,2 − Ea,1)
n1

n1 + n2

, (2.14)

Hγ,1 = Hγ,2 = −(Ea,2 − Ea,1)
n1n2

n1 + n2

. (2.15)

The full fields are then finally given by

Ea,1 = Ea,1e
−iωt, Ea,2 = Ea,2e

−iωt, (2.16)

Eγ,1 = Eγ,1e
−i(ωt+n1ωx), Eγ,2 = Eγ,2e

−i(ωt−n2ωx), (2.17)

Hγ,1 = Hγ,1e
−i(ωt+n1ωx), Hγ,2 = Hγ,2e

−i(ωt−n2ωx) (2.18)

and the discontinuity in Ea gives the missing amplitudes as

Eγ,1 = −E0

n1

(
1

n2

− 1

n1

)
, (2.19)

Eγ,2 = +
E0

n2

(
1

n2

− 1

n1

)
, (2.20)

Hγ,1 = Hγ,2 = E0

(
1

n2

− 1

n1

)
. (2.21)
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In summary, the presence of an axion-induced electric field produces waves propa-
gating away from a dielectric interface, the measurement of which is the targeted
evidence of axions in dielectric axion detectors. The two cases of specific interest
for MADMAX are the transitions from air/vacuum (ϵ = 1) to a dielectric material
(ϵ > 1) and to a metallic mirror (σ → ∞ ⇔ |n1| → ∞, ϵ ∼ 1 + iσ/ω). In the latter
case the amplitudes simplify to Eγ,1 = 0, Hγ,i = 0, Eγ,2 = E0 and Ea,2 = −E0. With
the Poynting vector S = E × H the cycle-averaged energy flux density radiating
from the mirror surface3 is

Pγ

A
= Sγ,2 =

E2
0

2
= 2.2 · 10−27 W

m2

(
Be

10T

)2

C2
aγfDM (2.22)

with the unit surface area A. This amazingly small power output presents the pri-
mary challenge in axion detection and would entail unrealistically long measurement
periods if even detectable with current technology. With its array of dielectric discs
MADMAX attempts to magnify this power through constructive interference between
the discs. Hence the power boost factor β is defined as the ratio of total power emitted
by the system w.r.t. the emission by only the mirror:

Ptot

A
= β2Pγ

A
η. (2.23)

η corrects for a potential detector efficiency; for the sake of simplicity we treat η as 1
for the remainder of this work.

2.3 Boost factor and transfer matrix formalism

This section will outline a calculation of the power boost factor as in [20] from MAD-
MAX’s geometry with the assumption of infinitely large discs as before4. The length
of the system is divided into homogeneous regions r = 0, 1, ...,m with each region
representing either the mirror (r = 0), vacuum, a disc or the open end towards the
antenna (r = m). Every region is associated with its length di, dielectricity and
refractive index ϵi, ni and its left boundary xi (i.e. the transition interface between
regions i − 1 and i) given by the distance from the mirror surface (x1 = 0), cf. [20],
fig. 4. Further, every region contains two (planar) waves moving left and right re-
spectively, denoted by their amplitudes Ri and Li. [20] employs the transfer matrix
formalism [26] to relate the amplitudes of two consecutive regions by(

Rr+1

Lr+1

)
= GrPr

(
Rr

Lr

)
+ E0Sr

(
1
1

)
(2.24)

3In comparison, the radiation from a disc surface carries an energy flux of Sγ,i =
E2

0

2ni

(
1
n2

− 1
n1

)2

that is in sum always smaller than the mirror emission (for realistic, finite ϵ).
4The interfaces are still normal to ex.

8



with

Gr =
1

2nr+1

(
nr+1 + nr nr+1 − nr

nr+1 − nr nr+1 + nr

)
, (2.25)

Pr =

(
e+iδr 0
0 e−iδr

)
, (2.26)

Sr =
Ar+1 − Ar

2

(
1 0
0 1

)
. (2.27)

Gr describes the transition, i.e. reflection and transmission at the interface, Pr shifts
the respective phase by the covered optical thickness δr := ωnr(xr+1 − xr) and Sr is
the source term of the axion-induced waves. The field strength of the axion induced
field is adjusted for every region as Ea,r = ArE0, Ar = Be,r/(ϵrBe,max). The first and
last region may then be connected by applying eq. (2.24) iteratively, resulting in(

Rm

Lm

)
= T

(
R0

L0

)
+ E0M

(
1
1

)
. (2.28)

The path through all regions is accumulated in the transfer matrix T =
∏m−1

i=0 GiPi

(left-sided multiplication), P0 = 1, M =
∑m

s=1 T
m
s Ss−1 collects all source terms. With

no external waves present, i.e. R0 = Lm = 0 we may find

L0 = −E0
M2,1 +M2,2

T2,2

, (2.29)

Rm = E0

(
M1,1 +M1,2 −

M2,1 +M2,2

T2,2

)
, (2.30)

with the matrix indices here denoting the respective entry. As we are only interested
in the power leaving the system towards the antenna, we finally arrive at the (right
sided) amplitude boost B = Rm

E0
. It is related to the power boost factor from eq. (2.23)

simply by
β = |B| −−−−→

n0→∞
|M1,1 +M1,2|. (2.31)

It is important to remember that the power output is scaling with β2 (eq. (2.23)),
(power) boost factor is used for both β and β2; we will be mostly referring to β2

however, for the rest of this work. An ensemble of discs, mirror and antenna is also
referred to as a booster.

The approach with infinitely large discs is equivalent to a one-dimensional calcu-
lation along ex due to the planarity of the waves. Thus analytical 1d in the following
will always refer to this transfer matrix approach. More realistic calculations in 3d
first and foremost take into account the finite size of discs and waves and sometimes
additional effects such as non-planarity and tilts of the disc surfaces or metallic, tube-
like waveguides. The necessary calculations may be approached with e.g. Bessel-mode
decompositions, propagation in Fourier space [27, 28] or finite element simulations [29]
with varying degrees of computational effort. [30] features a collaboration internal
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collection of algorithms for said calculations, including one equivalent to the transfer
matrix approach from above. It will be used throughout the sections regarding sim-
ulation.

With the analytical 1d calculation we learn from Gr and Pr that the final boost
factor is dependent on the discs’ dielectricity, the lengths of the vacuum gaps and
the angular frequency ω (it also depends on the disc thickness, which will be fixed to
1mm for the remainder of this work). The strength of MADMAX lies in its ability
to create a large boost value at almost arbitrary frequencies by flexibly adjusting the
distances between the discs. The goal is to scan all frequencies5 from 10-100GHz for
an axion-induced signal. For example, a high boost value may be focused in a narrow
peak to a specific frequency6 by placing the system in a strongly resonant, equidistant
state. It is possible to spread out high boost values over a larger frequency range or
bandwidth ∆ν by moving the system slightly out of focus in specific ways. In general,
a higher boost factor is always better, as it makes the signal detectable and reduces
the necessary measurement period to make a signal statistically relevant over noise
(cf. Dicke’s radiometer equation, signal-to-noise ratio increasing with

√
tmeas [31]).

This presents the possibility of measuring multiple frequencies at once and covering
the entire range quicker, with the trade-off of having to measure each window for
longer. The ideal bandwidth that minimizes the overall required runtime of the ex-
periment depends on the actually achievable boost factor in the final experiment and
the identification/reduction of noise; the boost during a measurement should be at
least 104 [20]. The overall height of the widened curve, or in other words its frequency
integral, is limited by the area law which dictates ⟨β2⟩d = ⟨β2⟩ω. In short, the average
in boost is the same when averaging over the disc configurations and over frequency,
with the consequence that

∫
dωβ2 = const for all possible disc arrangements7 [20]. In

fig. 2.1 an exemplary focused boost peak at 22.025GHz together with a wider variant
for a bandwidth of 50MHz is shown. The process to find the wide curve may be
treated as an optimization problem, where we try to achieve the best highest possible
boost over all frequencies in the current bandwidth – the lowest value in the interval
representing the quality of the curve. The ideal goal is thus evenly allocating as much
boost to the target range as possible resulting in a box-like curve8. Former experi-
ences have revealed a large redundancy of ’good’ configurations, meaning that a large
number of different states may yield similar results; this effect seems to increase with
the amount of discs. The exact process of achieving a spread-out curve is a primary
topic of thesis and will be discussed in detail during the following chapters.

Unfortunately, the boost factor is not a directly measurable quantity simply be-
cause it depends on the unknown axion field. The MADMAX collaboration has
devised methods to estimate it from available measurements such as the boosters

5From here on, we will switch from angular to standard frequency ν = ω/2π.
6E.g. to validate a potential discovery.
7For a fixed amount of discs with fixed properties. This value increases generally with the disc

amount and their ϵ value.
8The ’box-likeliness’ of optimized curves increases with the disc amount.
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reflectivity [32, 33, 34], which can be extracted from the transfer matrix calculation
as

R = Rm/Lm

∣∣∣∣
R0=0

=
T12

T22

. (2.32)

It will be discussed further in the following section.

Figure 2.1: Boost factor values (top) for the corresponding distances in-between discs
(bottom), using 20 discs of ϵ = 24 and 1mm thickness. The peak reaches a maximum
height of ∼ 508 ·103. The dashed lines indicate the target range of the widened curve
– 50MHz centered at 22.025GHz. Calculated using the analytical 1d simulation.
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2.4 Microwaves and the network analyzer

Vector Network Analyzers (in short, VNA) are versatile multi-port measuring de-
vices with the primary function of characterizing the microwave responses of a device
under test9 (DUT). The specific VNA in use for this thesis (see chapter 7) features
two ports, but only one will be required; the working principle remains the same,
a basic schematic of which is shown in fig. 2.2. In general, a network analyzer
sends a signal to a specific port i of the DUT and receives the signal from a sec-
ond port j – thus gaining knowledge about the transmission process from i to j.

DUT

P1 - in P1 - out

P2 - in P2 - out

Source

Splitters Couplers

Port 1

Port 2

Receivers

Receivers

Figure 2.2: Basic setup of a 2-port network an-
alyzer. A wave is generated by the source and
split between the DUT and the input receiver. The
transmitted power is picked up by the output re-
ceiver of the second VNA port. The wave-couplers
between splitter and DUT direct waves coming
from the DUT to the respective output receiver.
The switch next to the source allows to internally
swap input and output port.

As is shown by the schematic,
every measurement port fea-
tures two receivers, one behind
a wave-splitter in forward port
direction and the other after a
coupler in backward port direc-
tion. The coupler acts as a one-
way junction, thus only allowing
signals coming from the DUT
to reach its receiver. The port
sending the signal can there-
fore simultaneously measure the
wave’s reflection from the DUT.
Suppose that Ei,+/− is the wave
incident on/leaving port i of the
DUT, the scattering parameter
or S parameter from port i to j
is defined as10 [25, 35]

Sij =
Ei,−

Ej,+

∣∣∣∣
Ek,+=0, k ̸=j

(2.33)

or, expressed as a matrix11 for
the entire system, as

E− = SE+. (2.34)

Scattering parameters are generally complex and depend on the wave’s frequency,
possibly its input power and naturally the DUT.

For practicality, the DUT is usually not mounted directly on the VNA but rather
connected with coaxial cables and potentially additional devices12 – each of which

9May be multi-ported, likewise.
10Ei,± being the (complex) amplitude of the respective wave.
11Note that E± is the vector of in-/outgoing amplitudes, not a field/wave vector.
12Such as amplifiers or filters.

12



influences the passing waves by introducing losses, phase shifts and reflections. By
using calibration standards, i.e. DUTs of which the exact expected response is known,
the unwanted effects may be calculated out to some degree. The calibration procedure
is explained in more detail in chapter 7. Every high-end VNA is capable of scanning
(i.e. sending and measuring) multiple frequencies in a single sweep, the interval size is
given by the amount of sweep points. VNAs are an essential tool for MADMAX in the
research and development of the receiver chain and for understanding and character-
izing the booster’s microwave response. For this work, however, it will only be used
as a one-port device with a MADMAX-like prototype as the DUT, i.e. only S11 is of
interest. It will be referred to as the reflectivity and denoted by R in an attempt to
semantically decouple it from the scattering matrix or the electromagnetic reflection
coefficient Γ; we are only interested in recording some sort of system response and
in doing so, uniquely identify the system’s physical state. It can be extracted from
the transfer matrix calculation as R = Rm/Lm. The exact procedure is detailed in
chapters 4 and 7.

The relevant port will eventually be connected to a circular horn antenna pointing
at a parabolic focusing mirror (see chapter 7, appendix C). This produces a Gaussian
beam characterized by

E(r, x) ∝ 1

w
exp− r2

w2
− ikx− iπr2

λR
+ iΦ, (2.35)

where w = w0

√
1 + (z/zc)2 is the beam width, R = z+z2c/z the wave fronts’ curvature

radius and Φ = arctan z/zc some phase offset. Further, zc = πw2
0/λ is the so-called

confocal length. Methods to examine shape and quality of the beam were studied
on the same local setup [33, 34] and could be used in the future for boost factor
estimation and/or alignment checks. For now, the exact wave paths play only a
minor role. The antenna serves both as the emitter and as the receiver.
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3 Optimization theory

This chapter will feature an introduction to general optimization problems and a
select few numerical optimization algorithms which have proven fruitful in this specific
project. This introduction will follow the theory and notation of [36].

3.1 General optimization

In a general optimization problem one usually tries to find an extreme point of an
arbitrary scalar function

f : D ⊆ Rn → R, x 7→ f(x) (3.1)

which is commonly referred to as an objective function or cost function, x will be
known as the state (vector). The host set D of x, also known as the feasible region
of x, can be replaced with Rn by introducing explicit boundaries on x, namely a set
of equality constraints ci(x) = 0, i ∈ E and a set of inequality constraints ci(x) ≤
0, i ∈ I. Conventionally an objective function is minimized1; in order to maximize
a function we may minimize the function f(x) = −g(x) instead. An optimization
problem can then be formulated as

min
x∈R

f(x) subject to
ci(x) = 0, i ∈ E ,
ci(x) ≤ 0, i ∈ I. (3.2)

While the problem at hand is technically constrained, we will see that the constraints
will not be reached in regular cases, hence we will formulate them in due time but
are focusing on unconstrained optimization for now.

One usually desires to find the global minimum of a function; if a function is con-
vex and a minimum exists it is global. For non-convex functions it is often impossible
or impractical to determine whether a minimum is either local or global. Fig. 3.1
contains a simple example proving that our objective function is not convex.

1A lesser known consequence of capitalism.
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Figure 3.1: Two arbitrary optimized boost factor curves with similar final objective
value (top) but different solution states (middle). The objective value is scanned
along a straight line xA+α(xB−xA) (bottom). The epigraph of f along α is clearly
not a convex set, hence f cannot be convex on its entire domain. The objective value
is the lowest boost value between the dashed, vertical lines.

While global optimization algorithms exist for constrained non-convex functions,
they often come at high computational complexity. We will later introduce a tool to
decide whether an optimum is ‘global enough’ and will focus only on local optimiza-
tion algorithms.

We make the assumption that the motors carrying the discs can move to suffi-
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ciently small precision, such that we can treat the host set D as continuous. Thus we
need to employ continuous opimizers2.

As is the struggle with all physical experiments, everything from the instrument
readout over the device positions to the calibrations is subject to errors and uncer-
tainties. There are several approaches for optimization under uncertainty to try and
optimize the result under assumption of certain likelihoods, see e.g. [37]. However,
at this point in the development we should focus on the basics of the problem and its
solution. We therefore leave the error investigation, analysis and proper optimization
for future work; although we should keep the inherent stochasticity in mind when
analyzing the first results.

With this we can summarize the problem of interest as an unconstrained, non-
convex, continuous and deterministic optimization problem and can focus our atten-
tion accordingly.

3.2 Optimality conditions

A point x∗ is analytically considered optimal or a solution or a global minimizer of f
if

f(x∗) ≤ f(x) ∀x ∈ D, (3.3)

whereas it is considered a local minimizer of a neighbourhood N ⊂ Rn around x∗ if

f(x∗) ≤ f(x) ∀x ∈ N (x) ∩D. (3.4)

Assuming that f is continuous and (at least twice) continuously differentiable on
N (x), we can derive more useful criteria, akin to well known conditions for extrema
in calculus. We first apply Taylor’s theorem on f in first and second order as

f(x+ p) = f(x) +∇f(x+ tp)Tp (3.5)

= f(x) +∇f(x)Tp+
1

2
pT∇2f(x+ t′p)p (3.6)

for some t, t′ ∈ (0, 1), p−x ∈ N (x). ∇f and ∇2f describe the gradient and Hessian
matrix of f respectively. The first order necessary condition then follows as

x∗ is a local minimizer of f ⇒ ∇f(x∗) = 0 (3.7)

and the second order necessary condition as

x∗ is a local minimizer of f ⇒ ∇f(x∗) = 0, ∇2f(x∗) is pos. semidef. (3.8)

We may also define a second order sufficient condition as

∇f(x∗) = 0, ∇2f(x∗) is pos. def. ⇒ x∗ is a strict local minimizer of f. (3.9)

Proofs for all conditions may be found in [36], chapter 2.1.

2As opposed to discrete optimizers for binary/decision tree or mixed problems.

16



3.3 Optimization strategies

We first make a distinction between black box or derivative free and line search meth-
ods. Whereas a black box algorithm requires only knowledge of the objective value
f(x), line search methods also need access to the objective function’s derivatives, up
to second order. The performance of an algorithm may be evaluated in computa-
tional performance (i.e. run-time, amount of objective function calls), convergence
rate, or globality of the solution. We will later introduce another metric specific to
our problem.

3.3.1 Nelder-Mead algorithm

Originally proposed by J. A. Nelder and R. Mead in [38] as a downhill simplex method.
This algorithm is a black box method which improves on the objective value by iter-
atively replacing the worst point of a set of state vectors X = {x1,x2, ...,xn+1} with
a better one. The state vectors are required to describe the vertices of a simplex 3,
an n+1-dimensional polytope. X needs to be affinely independent, that is the set
{x1 − xi, ...,xi−1 − xi,xi+1 − xi, ...,xn+1 − xi} must be linearly independent for all
i ∈ n+ 1.

This short description and the final implementation will follow the more modern
formulation of [39, 40]. We choose an initial state x0 and construct the simplex from
there, as is explained later in this section. We then iteratively perform the following
steps:

1. Reorder and reassign the vertices of X such that

f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1).

2. Calculate the reflection point

xr = x+ α(x− xn+1) = (1 + α)x− αxn+1 (3.10)

and determine f(xr). x :=
∑n

i=1 xi/n is the centroid of X, excluding the worst
point xn+1, α > 0 is the reflection parameter.

If f(x1) ≤ f(xr) < f(xn) replace xn+1 with xr and terminate the iteration.

3. If f(xr) < f(x1) calculate the expansion point

xe = x+ β(xr − x) = (1 + αβ)x− αβxn+1, (3.11)

where β > 1 is the expansion parameter.

If f(xe) < f(xr) replace xn+1 with xe, else replace it with xr. Terminate the
iteration.

3https://en.wikipedia.org/wiki/Simplex
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4. If f(xn) ≤ f(xr) < f(xn + 1) calculate the outside contraction point

xoc = x+ γ(xr − x), (3.12)

where γ ∈ (0, 1) is the contraction parameter 4.

If f(xoc) ≤ f(xr) replace xn+1 with xoc and terminate, else continue with step
6.

5. f(xr) ≥ f(xn+1) calculate the inside contraction point

xic = x− γ(xr − x). (3.13)

If f(xic) < f(xr) replace xn+1 with xic and terminate, else finalize the iteration
with step 6.

6. Shrink the simplex towards the best point by setting

xi = x1 + δ(xi − x1), ∀ i ∈ n+ 1\{1} (3.14)

where δ ∈ (0, 1) is the shrinking parameter.

As the simplex could technically be shrunk to arbitrarily small sizes we must limit
the amount of iterations to a sensible value or implement a termination condition.
A natural option could be a threshold on the distance between x1 and the furthest
other vertex.

The parameters α, β, γ, δ can be freely chosen within the given bounds and in-
fluence the convergence properties of the algorithm. The default implementation by
Nelder and Mead [38] uses

α, β, γ, δ = 1, 2, 1/2, 1/2;

[40] suggests to scale them with the dimensionality of x to

α, β, γ, δ = 1, 1 + 2/n, 0.75− 1/2n, 1− 1/n.

We will apply the latter option during testing. Fig. 3.2 illustrates the possible oper-
ations in a 2-dimensional example (i.e. the simplex is a triangle). The blue arrows
indicate which length the respective parameter scales.

The simplex can be constructed for example by setting xn+1 = x0 and adding the
vertices x0+dei, i ∈ n with some sensible length d ∈ R≥0, where ei is the unit vector
along axis i. Similarly, following [41], every vertex can be set as

(x0,1, x0,2, ..., x0,i, ..., 0, 0) + (0, 0, ..., bx0,i + a, ..., 0, 0), i ∈ n.

4This is the same parameter as in step 5. Technically one could define a new one for the inside
contraction, but we will stick to the standard.
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Figure 3.2: The six steps in the Nelder-Mead algorithm with their respective control
parameters: 1) Ordering by objective value. 2) Reflection on the centroid. 3) Ex-
pansion of the reflection point. 4) Contraction of the reflection point. 5) Contraction
towards the centroid. 6) Shrinking of the simplex. Cf. [39] figs. 1-2.

This option follows the same idea as the first, but with regards to eventual scaling and
a fail-safe if an entry of x0 happens to be 0. Another option could be the construction
of a regular, n-dimensional polytope, or n-dimensional tetrahedron, with x0 being
the baricenter. This balances the distribution of the vertices around x0. It can be
constructed with the incircle and circumcircle radii of n-dimensional tetrahedrons5:

rin(d, n) =
d√

2n(n+ 1)
, rcc(d, n) = d

√
n

2(n+ 1)
(3.15)

d is the edge length of the tetrahedron/resulting simplex. The vertices are then
iteratively created by shifting the already existing vertices along axis i by −rin(d, i)
and adding the new vertex xi+1 = x0 + eircc(d, i) until n + 1 vertices are in place.
The starting point x0 is both the base vertex of the first iteration and the baricenter
of the construct (as which it will remain for every iteration).

3.3.2 Simulated annealing

This algorithm is another black box method and takes inspiration from the physi-
cal cooling process of metals, where atoms perform random thermal movements and

5Proof. Formulae derived by looking at geometrically easily calculable cases for n = 1, 2, 3, 4 and
guessing a generalization for n. Proof by obtaining the correct result6. □

6Which has been validated for n = 1, ..., 20, 80 by checking affinity, edge length, baricenter and vertex radii of the

resulting simplex.

19



eventually settle at low energy/stable positions. A notable early formulation may be
found at [42] (among others), we will focus on the description in [43], ch. 9.1. A solid
state physicist might be familiar with a similar approach when simulating an Ising
model, see for example [44].

The algorithm works with two state vectors xsol and xc which describe the overall
best found value and the current working state. We initialize by setting xsol = xc = x0

with the starting point x0. Further we require a strictly monotonically falling, but
always positive series T ⊂ R≥0, also referred to as the annealing schedule7. The
behavior of T is free to chose, e.g. linear, exponential; the best choice is problem
dependent. For each entry in T we then perform the following steps

1. Generate a state x′ ∈ N (xc).

2. If f(x′) ≤ f(xc) set xc = x′.

3. If f(x′) > f(xc) set xc = x′ only with probability8

P (xc,x
′, Ti) = e

− f(x′)−f(xc)
Ti . (3.16)

4. If f(xc) < f(xsol) set xsol = xc.

We can introduce a termination condition by simply choosing T with a finite length
or setting a minimal allowed value for Ti as a breakpoint. The starting value of T
should be chosen to T1 ≳ ∆f(x), i.e. the average rate of change one would expect in
a single step. Far higher values will lead to an effective randomization of the starting
vector, which can be beneficial in some cases, whereas too low values will confine it to
its current local minimum. The probability can easily be probed by checking whether
p ≤ P (xc,x

′, Ti) for a uniformly random p ∈ (0, 1). The method of our choice to
generate a neighbour x′ ∈ N (xc) will be

x′ = xc + δ
erand

∥erand∥
, (3.17)

where erand is a vector with uniformly random entries ∈ [−1, 1] and δ a uniformly
random variable ∈ (0, d]. d is thus the second control variable of the algorithm, along
T . This gives us a circular distribution around xc, biased towards the center. It is
a choice by design, as we want to bias x′ towards similar objective values as f(xc),
which can be achieved by predominantly probing the closer proximity.

This rather simple yet, as we will see, quite effective algorithm can be built upon
by e.g. guiding the neighbour selection even further, soft-resetting xc to xsol if f(xc)
gets significantly worse or having a dynamic, self-adjusting annealing schedule.

7Akin to the temperature of a material cooling down.
8Here, the connection to the Boltzmann probability distribution should become apparent.
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3.3.3 Linesearch algorithms

In this section we will discuss a group of flexible algorithms which can be customized in
several ways to adapt to the problem. All of them follow the pattern of determining
a direction in which to move and then scanning along this direction for favorable
points, one iteration is formulated as

1. Find descent direction p at x.

2. Find step length α such that f(x+ αp) < f(x), α ∈ R≥0.

3. Set x = x+ αp.

We move back to [36] for reference, namely ch. 2.2 and 3.

Descent directions

As the name suggests, a descent direction p at x points to where the objective function
is decreasing, or as a general formulation:

p is descent direction at x ⇔ ∃α ∈ R≥0 | f(x+ αp) < f(x). (3.18)

In most cases this also means that the directional derivative along p at x is negative:

∇pf(x) := pT∇f(x) =
∂

∂a
fp(a) < 0, (3.19)

where fp(a) := f(x+ ap). If we choose ∥p∥ = 1 it follows

pT∇f(x) = ∥p∥ ∥∇f(x)∥ cos θ = ∥∇f(x)∥ cos θ

which is minimal for cos θ = −1. Therefore

p = − ∇f(x)

∥∇f(x)∥
(3.20)

is the steepest descent direction, i.e. the (unit) direction with the greatest (negative)
rate of change. It is perpendicular to the contour lines of f at x. If we think back to
eq. (3.7) it is obvious that at a local minimum no descent direction can be found.

We can derive a more sophisticated descent direction from a second order Taylor
expansion (see 3.6):

f(x+ p) ≈ f(x) +∇f(x)Tp+
1

2
pT∇2f(x)p (3.21)

for some sufficiently small ∥p∥. Under the assumption that∇2f(x) is positive definite,

we can solve locally for the minimum of f(x + p) in p by setting ∂f(x+p)
∂p

= 0. We
gather

p = −(∇2f(x))−1∇f(x), (3.22)
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Figure 3.3: The steepest descent direction is perpendicular to the field lines and this
may not point well towards the local minimum. With an ill-suited step length an
iteration can overshoot and lead to poor convergence, as seen on the right. From [45],
figs. 6.6 and 6.7.

known as Newton’s descent direction. The quality of this direction of course depends
on how well the expansion approximates the true function locally; a quadratic prob-
lem would be solved in a single step. Since the solution is exact in the approximation,
the step length is fixed, however it is usually beneficial to normalize ∥p∥ to 1 and
combine it with some sort of linesearch. Furthermore, if ∇2f is not positive definite,
p could not be a descent direction or worse yet, not defined. Several options exists to
tackle this problem, such as adding unity to ∇2f until positive definiteness is reached;
we, however, choose to ignore this problem and see that it works nonetheless in the
examples given.

While the necessity of the Hessian matrix comes with higher computational cost
we usually achieve better convergence. An illustration of why a higher order approx-
imation may improve convergence is shown in fig. 3.3.

A prominent compromise is the BFGS 9 algorithm [36], ch. 6.1. It is a quasi-
Newtonian method, i.e. it follows the same procedure but approximates the Hessian
matrix B to save on computational effort.

We start with an (optionally already approximate) Hessian

B0 ≈ ∇2f(x0) (3.23)

and iteratively update it as

Bk+1 = Bk +
yky

T
k

yksk
− Bksks

T
kB

T
k

sTkBksk
, (3.24)

9C. G. Broyden, R. Fletcher, D. Goldfarb, D. Shanno.
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where yk+1 = ∇f(xk+1) − ∇f(xk) and sk = xk+1 − xk. Then, as with Newton’s
algorithm the step is pk = −B−1

k ∇f(xk). We can spend computational power to
improve the approximation by properly calculating the Hessian every m steps or if
no (significant) improvement is to be found along pk.

Linesearch

Now equipped with a (normalized) descent direction p, a step length α needs to be
determined. We will quickly discuss conventional methods to motivate how and why
we do it differently later on, see [36], ch. 3.1 for reference. Ideally we find the local
minimum of fp(α) := f(x + αp), i.e. solve the sub-optimization minα∈R≥0

fp(α).
We do however not want to use a further optimization routine and instead content
ourselves with a step of sufficient decrease. The Armijo condition states that since p
is a descent direction and therefore ∇pf(x) is negative, that

∃α ∈ R≥0 | fp(α) ≤ fp(0) + c1α∇p(0)f =: l(α) (3.25)

where c1 ∈ (0, 1). In other words, l(α) is a line that lies strictly above fp in at least
some domain. Assuming that fp has a lower bound, they are guaranteed to cross at
some point. A sufficient decrease is required to satisfy fp(α) ≤ l(α). This condition
is met for all sufficiently small α, hence we introduce the curvature condition which
requires α to fulfill

∇pf(α) = f ′
p(α) ≥ c2∇pf(0) (3.26)

with c2 ∈ (c1, 1). This ensures that we do not terminate the linesearch prematurely,
as we demand the slope of fp(α) to have flattened sufficiently (as should be the case
near a local minimum10). Additionally, we also guarantee to terminate if no further
significant change can be expected or the slope is even positive. Together, eqs. (3.25)
and (3.26) are also known as the Wolfe conditions.

A realistic linesearch implementation will set c1, c2 as above, some ρ ∈ (0, 1) and
an initial step length α (e.g. 1 for a true Newton step). α is then iteratively updated
to ρα until the conditions are satisfied.

Terminal conditions

Inspired by the first order necessary optimality condition (eq. (3.7)), a threshold ϵgrad
is defined as a minimum slope requirement, i.e.

ϵgrad
!

≥ ∥∇f(x)∥2. (3.27)

If this condition is not met when the gradient is calculated, terminate. Later on we
will introduce a procedure to handle unsuccessful linesearches, see section 4.5. One
option is to just terminate. Additionally, the maximum amount of iterations can
simply be limited.

10This can be enforced more strictly by taking the absolute value of both sides of eq. (3.26).

23



Compound methods

Some linesearch methods hybridize approaches, such as Powell’s dog leg method or
the Levenberg-Marquardt algorithm. A common strategy is the so-called trust region,
which makes an estimation for the area in which a second order approximation is
sufficiently accurate. More precisely, if a Newton step lies within the trust region,
perform a Newton step, otherwise do a linesearch along the steepest descent direction.
The size of the trust region then gets dynamically in-/decreased, depending on which
step was chosen. As of now we have only implemented a simple compound method
which uses Newton’s step, but falls back to a steepest descent step in certain cases.
We will in fact replace/augment Newton’s method during testing with this hybrid
approach; the reasoning alongside a detailed description will be given in chapter 4.
Future work could focus on a more sophisticated combination.
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4 MADMAX specific optimization

Here, we will revisit the methods introduced in the previous chapter and discuss nec-
essary and optional modifications to accommodate for our specific needs. We start
by properly formulating the optimization problem for the MADMAX booster.

As discussed in section 2.3, the boost factor is the figure of merit. In order to
reduce the overall time required to scan the entire range from 10 - 100GHz, we wish
to broaden the signal, i.e. move a bit away from a highly resonant state; achieving a
boost as high as possible still is the key to a possible axion discovery. We therefore try
to maximize the lowest boost value in a chosen frequency band, or with the convention
introduced in section 3.1:

min
x

fβ(x), fβ(x) = −min
ν

β2(x, ν), ν ∈ [νmin, νmax] (4.1)

Note that practically, the frequencies will be some finite, discrete set νi. The resolu-
tion should be chosen according to the local smoothness of β2(x, ν).

Since the boost factor cannot be measured directly we have to rely on different
system response metrics, such as the reflectivity R. For the first physical tests we
therefore use as the objective function

fR(x) =
n∑

k=1

g(|R(x, νi)−R0|), (4.2)

where R0 is some reference reflectivity1 and g an optional scaling function, e.g. iden-
tity, square or exponential. An ultimate approach could be to determine the reflectiv-
ity of a desirable boost factor curve e.g. by simulations and optimize for that reference
reflectivity. In chapter 6 we show that this approach works analytically in 1D, with
the physical setup we take the reflectivity of some position as reference, see chapter 7.

The domain of x is constrained by the range of the motors

xi ∈ [rl,i, rr,i] ⇔ rl,i − xi ≤ 0 ∧ xi − rr,i ≤ 0, (4.3)

where rl/r,i is the left/right movement boundary of disc i. Further, the discs cannot
move through each other and obviously should not collide, hence

xi − xi−1 + br,i−1 − bl,i ≤ 0. (4.4)

1With fR(x) = 0 being the lowest possible value, a perfect match.
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br/l,i describes the physical size of the discs along the booster including the fixture
and possibly the motor carriage2. In distance space (see below) eq. (4.4) can be
reformulated as

−(di + τ) + br,i−1 − bl,i ≤ 0. (4.5)

If we want to be thorough we can limit the maximum length of the booster as xn −
xmax ≤ 0 or set rr,n accordingly. As previously mentioned we still chose unconstrained
optimization algorithms simply for the ease during implementation and chapter 6 will
show that in a full setup the constraints usually remain fulfilled. We do however use
these formulations to implement safety measurements for the physical setup, i.e. pre-
movement checks for collisions and out-of-bounds movements. Extra care is exercised
to choose initial conditions where no forbidden movement occurs.

4.1 Traveling time as a performance metric

Under the assumption that the different algorithms arrive at comparably good results,
we should introduce a metric to decide which one performs best. From a practical
viewpoint we can identify two main issues. The first is the overall time it takes for
the system to reach an optimal position, i.e. the time it takes to switch between
two frequency scanning areas. This is imposed by the finite speed of the motors; the
time to move between two state vectors x during the opimization is dictated by the
motor that has to travel the farthest. In the lab setup this is determined by simply
measuring the time, in the analytical simulation we keep track of

∆t =
∥x− x′∥∞

vmotor

=
maxi |xi − x′

i|
vmotor

(4.6)

and sum over every movement3.

Since the experiment is intended to run for extended periods of time, we also need
to consider the wear on the motors. Further, motor movement introduces additional
heat to the system, which needs to be cooled close to absolute zero. We therefore
record the boosters total travel distance in each step

∆X = ∥x− x′∥1 =
n∑

i=1

|xi − x′
i| (4.7)

and sum it up as well. Overall, a reduction in both values is desired, computational
efficiency is not of concern at this point.

2In an analytical setup considering purely the discs, br,i = τ and bl,i = 0 for all discs.
3Here, we omit that physical motors have short acceleration periods.
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4.2 Distance space vs. position space
Position space vs. distance space

𝑥𝑖 = σ𝑘=1
𝑖 𝑑𝑘 + 𝜏(𝑖 − 1)

⟺ 𝑑𝑖 = 𝑥𝑖 − 𝑥𝑖−1 − 𝜏
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Figure 4.1: Disc configuration in its two possible
representations. The position space x measures
the distance of the left disc edge to the (usually
stationary) mirror, i.e. it can be thought of as the
laboratory frame. The distance space d measures
from the right edge of a disc (or the mirror) to the
left edge of the subsequent disc. The disc thickness
τ is therefore not included in the distance space.

As is illustrated in fig. 4.1, there
are two ways to numerically de-
scribe the disc configuration; in
the laboratory frame w.r.t. the
mirror (position space) and with
respect to each other (distance
space). The latter is handy
for simulating the experiment as
the wave propagation relies fore-
most on the distance traveled.
Especially a 1d approach as the
matrix formalism natively works
in distance space. For a realistic
setup however, the motors and
disc carriages will most likely4

be mounted on a literal labora-
tory frame. At the very least,
this is the setup for the prac-
tical part of this thesis. Hence
the motors and therefore the
discs will be controlled in posi-
tion space. The conversion be-
tween the two is the simple lin-
ear connection

xi = τ(i− 1) +
i∑

k=1

dk ⇔ di = xi − xi−1 − τ, (4.8)

where x denotes the configuration in position space and d in distance space. We have
corrected for the disc thickness τ . This distinction is of further significance in regard
of the derivatives as they are not interchangeable. With eq. (4.8) we gather

∂xi

∂dj
=

i∑
k=1

∂dk
∂dj

=
i∑

k=1

δjk =

{
0, i < j

1, i ≥ j
, (4.9)

∂di
∂xj

=
∂xi

∂xj

− ∂xi−1

∂xj

=


1, i = j

−1, i = j + 1

0, else

. (4.10)

In other words, if we change the position of one disc, both adjacent distances vary
(but their sum will stay the same), changing one distance makes all subsequent discs
move by the same amount in position space. Therefore one important insight will
be whether optimization still works if the state vector is in position representation;

4Mounting the discs on top of each other seems structurally unsound and prone to failure.
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previous optimizations were carried out in distance space. Uncertainties on the disc
configuration5 also occur in position space. Lastly, a motor failure would lead to a
disc being stuck to a fixed position, the position space would be the natural choice
to examine such cases.

4.3 Finite differences

With the linesearch algorithms we have introduced a class of methods that require
knowledge of the objective functions derivatives. In analytical simulations these can
be calculated e.g. by forward differentiation (see for example [46]). In the physical
setup however, we are left with only the reflectivity as the direct system response
which does not yield derivatives. To remedy the lack thereof we employ simple finite
difference methods, akin to the formal definition of the difference quotient:

∂f

∂xi

= lim
h→0

f(x+ hei)− f(x)

h
(4.11)

≈ f(x+ h′
i)− f(x)

h′ (4.12)

≈ f(x+ h′′
i )− f(x− h′′

i )

2h′′ (4.13)

for some sufficiently small h′, h′′ and h′
i = h′ei, h

′′
i = h′′ei. For a better, but costlier

approximation we can use the double sided option. Some variants for the second
order derivative are

∂2f

∂xi∂xj

≈
f(x+ h′

i + h′
j)− f(x+ h′

i)− f(x+ h′
j) + f(x)

h′2 (4.14)

≈
f(x+ h′′

i + h′′
j )− f(x+ h′′

i − h′′
j )− f(x− h′′

i + h′′
j ) + f(x− h′′

i − h′′
j )

4h′′2 .

(4.15)

The Hessian matrix is generally symmetric which allows us to save effort by only
calculating the upper or lower triangle directly if the approximation is good.

4.4 Linesearch

The linesearch algorithms introduced in section 3.3.3 perform their search by starting
with some step length α and reducing it towards 0. Given that the motors physically
have to move to each new position, it is highly impractical to move out and then search
’backwards’. Instead, we can search ’forwards’ by taking measurements along the way.
Considering the usual speed of the motors in use and the high measurement frequency
of the VNA, it should even be possible to take measurements while the motors are
moving. In other words, by measuring while moving, the booster inherently performs

5Be it imprecise positioning by the motors or statistical errors from measurement.
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the linesearch for us. This introduces the challenge of adjusting the motor speed
accordingly, such that the state vector moves in a straight line between two positions,
see fig. 4.2 for an illustration6. For now, we are satisfied with incrementally moving
a small step and adjust the linesearch algorithm to

• For k = 1,2,...,kmax

– set xk = xk−1 + αp

– if f(xk)− f(xk−1) > ϵls

∗ set x = xmin, with xmin as the minimizer of f(xi)

∗ break

x1

x2

v1 > v2

v1 = v2

v2 = 0

Figure 4.2: A two-dimensional example of
how to move in a straight line through the
state space. If both motors operate at full
speed (upper line), the one with the shorter
path will stop first. For a straight line, the
shorter axis needs to be slowed down.

Inspired by the original algorithm, we
have introduced an additional termina-
tion condition with ϵls which allows us
to reject insufficient slopes in fp. Set-
ting ϵls = 0 simply means we stop as
soon as we move uphill, whereas ϵls > 0
allows us to probe for hidden local min-
ima and make it more robust towards
early termination (at the cost of longer
run time). As long as the motors move
sufficiently slow this approach yields a
scan of f along p with a reasonable res-
olution. The choice α ≈ fmeasure · vmotor

lets us emulate the behavior of measur-
ing during movement, fmeasure is the av-
erage measurements per second achiev-
able by the device. Higher resolution
could be achieved by slowing down the
motors.

An interesting opportunity arises here, if we think back to the Nelder-Mead algo-
rithm and specifically fig. 3.2. We note that the centroid, the expansion point and
both contraction points all lie on a straight line through the centroid. This allows
for unique combination with the linesearch, where we perform all the Nelder-Mead
steps and probe everything in between with a single scan. We then simply take the
best found point as the replacement vertex. Some restraint should be put in place
to prevent the new point from being too close to the centroid (in order to preserve
the affinity of the simplex). This sophisticated compound approach is not yet im-
plemented but makes for a substantial improvement opportunity to the Nelder-Mead
algorithm for future work.

6First promising tests with motors faster than used here were carried out by Nick Michealis in
his bachelor’s thesis [34].
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4.5 Unstucking

With the area law introduced in section 2.3, we have a powerful tool at hand with
which we can gauge the quality of a solution. This means that even if we did not
have a reference from different algorithms or previous optimization, we can formu-
late a rough expectation7. As time is of essence, we should not have to restart the
optimization from scratch if it terminates below this threshold8. If the algorithm has
already performed a few iterations, it likely made some good optimization progress.
Therefore it is a sensible approach to perform a soft reset in an attempt to unstuck
the progress and have it run again. We will go through a few natural ideas for each
algorithm.

The most basic approach would be to ’shake up’ the system by applying a random
shift as

x′ = x+ δ (4.16)

where δi could be e.g. randomly uniformly distributed from [−δ, δ] or distributed nor-
mally from N (0, δ). The magnitude δ of the shift has to be chosen carefully, lest we
destroy too much of the progress made or make no significant impact. This method is
especially applicable for the linesearch algorithms, as they only have a single working
state vector. In the case of the BFGS algorithm this completely destroys the approx-
imation of the Hessian, which relies on its previous iterations. Hence we also need to
properly recalculate the Hessian matrix.

This is in principle possible in the Nelder-Mead algorithm too (e.g. by shifting the
entire simplex by the same vector or shifting each vertex individually), but instead
we choose to enlargen the simplex. Several options are available, such as expanding
every point away from the simplex center, perform an expansion from the worst point
(similar to a shrink step, but towards the worst point, with a δ > 1) or set up a new
simplex entirely.

Given the nature of simulated annealing, where each step is essentially a random
shift in itself, this seems a bit in vain. A much more sensible procedure is to reset T
to some higher value and optionally reset xc to the current best solution xsol. Then
it should unstuck itself by design.

Pairing the normal algorithms with such an unstucking technique hopefully gives
us fairly robust one-off methods.

7The quality of this guess of course depends on our understanding of the entire system and the
loss sources.

8Especially algorithms like the Newton method are at risk of regularly doing so if the approxi-
mations made are not accurate.
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4.6 Custom hybrid method

During testing, a fundamental flaw in the Newton method became apparent. The
second order approximation of the objective function figuratively approximates the
contour lines9 as an ellipsis from the local derivatives and moves to the center of
said ellipsis. If, however, the local contour line is concave in downward direction, the
center of the ellipsis will point uphill and the step should be taken in the opposite
direction10. We therefore introduce a test of the Newton direction, where the step
direction is searched similar to the linesearch approach for ntest steps with a length
of αtest. If every step does not yield a slope below ϵtest, search the opposite direction
in the same manner. We then simply fall back to our standard steepest descent step
if both tests failed, as the gradient has already been calculated anyways.

9Lines of constant objective value.
10There likely is some mathematical property of the gradient and/or Hessian that allows to flip

the sign of the step accordingly. No such thing was found in literature implementations, however.
Here, a more direct condition is chosen.
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5 A few words on the implementation

This chapter will shortly discuss some functionality, terminology and the extent of
the developed packages.

5.1 Optimization

The optimization package features implementations of the aforementioned algorithms.
They are designed to be flexible through costumizable modules. It is possible to per-
form both analytical and physical optimization; the latter requires interfacing with
the second package. Julia’s multiple dispatch paradigm is employed to use the same
algorithm in both cases, we define an analytical booster and a physical booster re-
spectively. Both contain all information required to describe the system, namely disc
number1, relative disc dielectricity, disc thickness and disc positions. They also carry
timing information which is handled accordingly. The physical type is further ap-
pended by quantities of the physical motors, such as calibrations, possible movement
ranges and motor internal zero positions. The striking difference is then how move-
ment commands are handled; an analytical booster will just have its position vector
updated, whereas the motors actually move in the physical counterpart. It should be
noted, that most of the movement and collision detection functionality is situated in
the second package.

The modules of the algorithms are inserted as a custom callback function type
consisting of a function and a tuple holding extra arguments. We will compile a short
list of modules and as of now implemented options in the following:

General, same for all:

• Objective function: how a position is evaluated for the optimizer – fβ, fR from
analytical 1d, fR from a direct VNA measurement.

Nelder-Mead:

• Simplex initializer: constructs the staring simplex – as described in section 3.3.1,
affine simplexer from [41].

• Simplex objective: defines the order in which each vertex is visited – numerical
with choice to only visit specific indices.

1Redundant with length of position vector, but easier to access.
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• Unstucker: performs an unstucking step – create new simplex either from best
or worst point, expand simplex away from worst point.

Simulated annealing:

• Resetter: decides if and how the current solution should be soft reset – reset
if no improvement is made to xsol for nreset steps, terminate if resetted nterm

times in a row.

• Unstucker: performs an unstucking step – not yet implemented.

Linesearch:

• Solver: calculates the step direction using derivatives and previous steps – steep-
est descent step, Newton’s step, BFGS step.

• Derivator: provides the derivatives – finite differences in first and second order,
single and double sided; can be improved to save steps.

• Stepper: prepares the step vector – normalizes p to 1 or such that maxp = 1.

• Search: performs the linesearch – search as long as slope is below threshold,
search for fixed steps or fixed length, perform a true Newton step (step length
1 if p is not normalized).

• Unstucker: performs an unstucking step – random shift, search along coordinate
axes.

Every optimizer needs to be supplied with a vector of states called history – a
state contains the position vector x, the objective value f(x) and a timestamp. Every
time the objective value is requested, it is pushed into the history. Thus we gain a
record of all visited states. It can be of arbitrary length, but minimally as long as
required by some sub-processes (e.g. the double sided derivator compares the four
most recent steps for every entry of the Hessian matrix). The optimizers each return
a trace which contains algorithm specific information about every iteration step. In
the sections below we will use both the history and trace to visualize the ‘trajectory’
of booster and optimizer respectively.

We want to emphasize that neither analysis nor development are final. One major
use-case of optimization in MADMAX is shifting the frequency position of an opti-
mized curve – which is achievable by multiplying all distances2 by a factor ∼ ν1/ν2 –
to eventually cover the entire frequency range. Depending on the starting frequency
and the shift distance, the booster has to be re-optimized slightly as the shift usually
changes the boost factor shape to some degree. These optimizations are often very
quick as the shifted state is generally better than the equidistant state. This requires,
however, an optimized state in the first place, which is why we will be focusing on

2Could be performed in a linesearch-like manner.
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optimization from scratch in this thesis.

With the incomplete analysis and most experimental details not yet settled, a
large and flexible optimization toolbox will allow us to properly decide on the best
approach when the time is right.

5.2 Motor and VNA control

At the core of this package is a Julia wrapper3 of the XIMC software package provided
by Standa Ltd. [47]. The base version of the wrapper is prepared using the Clang
package4 [48]. This API provides the basic communication with and control of the
motors. From here the interface is further developed for practicality and ease of use
with Julia’s struct and multiple dispatch paradigms, suited to our specific needs. The
connection to the devices is provided either via USB or more conveniently – because
wireless – through an Ethernet hub.

This package also includes a control interface for our Keysight network analyzer5.
We can establish a connection to the device with a TCP socket6. Commands, such
as settings and measurement requests, are sent as bytestrings in UTF-8 encoding7

through the socket. The specific command strings are found in the manual section
on the device itself. We can request data directly from the device in 64-bit floating
point format and transform it to Julia arrays. Among other options, the data can
be read out directly after the VNA applied calibration and error correction or after
internal transformations, such as time-gating.

3Julia is natively capable of calling C and C++ code; a wrapper ‘wraps’ Julia functions around
a call for every public C function.

4Tragically, this process is not perfect and both the Julia documentation for the C/C++ interface
and the XIMC manual are ambiguous and lacking at times. The wrapper is fixed with the scientific
method of arbitrarily placing or removing Ref and Ptr statements until it works.

5Special thanks to Nick Michaelis for greatly expanding the VNA control interface and Alexandros
Deslis for providing and explaining to me his Python version of the code. Both thoroughly helped
in testing the system.

6https://en.wikipedia.org/wiki/Transmission_Control_Protocol
7https://en.wikipedia.org/wiki/UTF-8
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6 Optimization in analytical simulations

In this section we explore the new implementation in an analytical setup, i.e. we
employ the aforementioned analytical 1d code to calculate the boost factor and re-
flectivity of the system. The booster itself is likewise simulated as an analytical
construct. We use lossless lanthanum aluminate discs, i.e. ϵ = 24.0 and tan δ = 0 of
1mm thickness. The frequency bandwidth is chosen as 50MHz at 22GHz for all trials.

With the area law in mind we try to initially allocate a significant portion of
boost value to the target range. Thus, the starting point x0 will be derived from
an equidistant state with δ0,i = δ ∀ i ∈ n. δ is found by solving the one dimensional
problem

max
δ∈R

β2(x(δ), νcenter), (6.1)

i.e. we try to find the distance at which a largest possible peak is centered in the
frequency window. This distance is known to be ≈ λ/2; we simply search the area
around this value by brute force. For our specific parameter set we gather δ ≈ 7.21mm
for 20 discs and δ ≈ 7.22mm for 80 discs.

6.1 20 discs by boost factor

The frequency window is sampled at 10 evenly spread points, which proved to be
sufficient to capture the structure of the boost factor curve. From previous experiences
with optimization for such a setup we know to expect an objective value of ∼ −14 000.
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6.1.1 Nelder-Mead

In figs. 6.1 to 6.3 the boost factor evolution, trace and history of the optimization
progress are displayed. The noticeably angular shape of the best vertex distances in
fig. 6.2 reflects jumping of the best vertexes index. From the noise-like structure of
the distance history in fig. 6.3 we conclude that the simplex size is consistent until it
eventually converges to 0 at the end; it indicates a good choice of the initial parameter.

Figure 6.1: Nelder Mead – 20 disc optimization, process of the boost factor curve.
1000 iterations, simplex initialized along coordinate axes with d = 10 µm, minimum
simplex size of 1 µm and no unstucking. Total elapsed travel time is 2 minutes and
13 seconds with a combined travel distance of 8.8 cm.
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Figure 6.2: Nelder Mead – 20 disc optimization. Trace of the objective value (top)
and distances (bottom) for the best vertex.
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Figure 6.3: Nelder Mead – 20 disc optimization. History of the objective value (top)
and distances (bottom).
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6.1.2 Simulated annealing

In figs. 6.4 to 6.6 the boost factor evolution, trace and history of the optimization
progress are displayed. Comparison of history and trace (both objective value and
distances) clearly show the random movement over the current best solution. The
tail at fβ ≈ −14 000 shows that the system is now much more sensitive to changes
and how rarely any further improvement is found until finally the early termination
condition triggers.

Figure 6.4: Simulated annealing – 20 disc optimization, process of the boost factor
curve. Temperature T falls linearly from 1 to 0 in 2001 steps, δ = 25 µm, nreset = 50,
nterm = 2, no unstucking. Total elapsed travel time is 54 seconds with a combined
travel distance of 5.0 cm.
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Figure 6.5: Simulated annealing – 20 disc optimization. Trace of the objective value
(top) and distances (bottom) of the current best solution.
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Figure 6.6: Simulated annealing – 20 disc optimization. History of the objective value
(top) and distances (bottom).
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6.1.3 Steepest descent

In figs. 6.7 to 6.9 the boost factor evolution, trace and history of the optimization
progress are displayed. It is immediately noticeable in fig. 6.8 that the objective trace
is not monotonously falling as was the case with the previous optimizations. Each
spike indicates, that an unstucking step has been performed during this iteration,
we gather that his happens regularly. The tail region after iteration ∼ 110 shows
how destructive unstucking can be to the objective value but also that algorithm can
usually recover quickly. Most important however, it converges fairly consistently in
the beginning but struggles to reach the really low objective values. This is likely due
to the finite difference approximation not being able to resolve the structures at high
boost factors. If we set h smaller it does, however, not converge well early on.

Figure 6.7: Steepest descent – 20 disc optimization, process of the boost factor curve.
Linesearch step length of 0.1 µm for 100 steps, h = 1 µm for first derivative and ran-
dom unstucking with δ = 10 µm and a threshold of −14 000. 250 iterations maximum.
Total elapsed travel time is 2 minutes and 45 seconds with a combined travel distance
of 3.9 cm.
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Figure 6.8: Steepest descent – 20 disc optimization. Trace of the objective value (top)
and distances (bottom).
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Figure 6.9: Steepest descent – 20 disc optimization. History of the objective value
(top) and distances (bottom).
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6.1.4 Hybrid method

In figs. 6.10 to 6.12 the boost factor evolution, trace and history of the optimization
progress are displayed. A look at the objective trace in fig. 6.11 reveals a good im-
provement in terms of convergence over the steepest descent method, as the optimizer
does not get stuck until it reaches objective values below −13 000. In this region it
faces the same struggle as described above. The same stair-like structure is observable
in the history, now more pronounced as the second derivative is calculated as well.
This also causes the long runtime, combined with the ’empty’ iterations at the end.

Figure 6.10: Hybrid method – 20 disc optimization, process of the boost factor curve.
Linesearch step length of 1 µm for 200 steps, h1 = h2 = 1 µm for first and second
derivative and random unstucking with δ = 10 µm and a threshold of −14 000. The
step direction was tested once at αtest = 10 µm. 50 iterations maximum. Total elapsed
travel time is 28 minutes and 23 seconds with a combined travel distance of 29.2 cm.
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Figure 6.11: Hybrid method – 20 disc optimization. Trace of the objective value (top)
and distances (bottom).
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Figure 6.12: Hybrid method – 20 disc optimization. History of the objective value
(top) and distances (bottom).
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6.1.5 Performance metrics

For a rough, preliminary estimate of each algorithm’s capabilities, the optimizers are
run repeatedly. We begin with an equidistant spacing as before, but also introduce a
Gaussian, uncertainty-like shift on the starting position as x0 = x′

0+σ, σi ∈ N (0, σx).
We optimize for boost factor, with a bandwidth of 50MHz at 22GHz, just as before.
This process is repeated for values of σx = 1, 10, 50, 100 µm. The influence of σ on
the initial peak is illustrated in fig. 6.13.

Figure 6.13: Shifting of the initial peak by introduction of uncertainty on the equidis-
tant spacing in position space. The heavy bias to higher frequencies stems from the
uncertainties being applied to the positions. See appendix A, fig. A.1 for the same
procedure with uncertainties in distance space.

For each set of runs the average final objective value fβ,F and success rate η are
calculated. Here, a run is counted as successful if it terminates with an objective
value below −10 000. We look at the performances in terms of total distance traveled
and total time moving, albeit them looking rather similar. It should be noted, that
the results from this section are by no means ultimate, as they depend strongly on the
parameters chosen and each algorithm may be developed and/or optimized further. It
is often possible to improve at the expense of runtime/travel distance. An effort was
made nonetheless to find parameters that reduce the runtimes while giving acceptable
results. The outcomes are illustrated in figs. 6.14 to 6.17 and the key takeaway has
been compiled to table 6.1. The common accumulation of points to the right plot
boundaries implies unfinished optimizations that could produce better results with
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more iterations, but letting the optimizer run for arbitrary amounts of time is time
consuming and impractical. Early terminations in the lower left corner indicate that
shift on the starting position was too destructive.∑

∆X [mm]
∑

∆t [s] −fβ,F/10
3 η

Nelder-Mead 75 - 125 100 - 200 14.4|14.4|13.5|7.6 1.00|1.00|0.96|0.50
Annealing 50 - 125 50 - 150 13.8|13.8|13.0|8.4 1.00|1.00|0.96|0.56
Steepest 20 - 200 10 - 500 13.3|13.3|13.0|10.4 1.00|1.00|0.97|0.69
Hybrid 50 - 500 200 - 2000 13.5|13.7|12.6|11.1 1.00|1.00|0.86|0.67

Table 6.1: Approximate runtimes and performances of each algorithm. The entries
of the last two columns represent the values for the respective σx.

In summary, all algorithms proved to be reliable for σx = 1, 10 µm. Both gradi-
ent free methods converge consistently quick, whereas the linesearch methods show a
larger spread. This also reflects their difficulty to converge to the lowest objective val-
ues, as was discussed before. They do, however, have the advantage of delivering more
consistent improvements even if the initial state is highly unfavorable. The hybrid
method, due to the finite differences method in second order, may take substantially
longer.
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Figure 6.14: Nelder Mead – parameters chosen are coordinate initialization with
d = 10 µm, regular simplex unstucking around the best vertex with d = 50 µm at a
threshold of −10 000, minimum simplex size of d = 1 µm and 2000 iterations.
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Figure 6.15: Simulated annealing – parameters chosen are T linearly falling from 2
to 0 in 2001 steps, δ = 25 µm, nreset = 50 and nterm = 2.
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Figure 6.16: Steepest descent – parameters chosen are α = 10 µm, h = 1 µm, extended
search by 10 steps, 1000 iterations and unstucking with δ = 10 µm at a threshold of
−13 000. 100 trials.
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Figure 6.17: Hybrid – parameters chosen are α = 1 µm, h1 = h2 = 1 µm, extended
search by 200 steps, 200 iterations, unstucking with δ = 10 µm at a threshold of
−13 000 and single step testing with αtest = α. 100 trials.
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6.2 20 discs by reflectivity

As a short proof of principle that the system is indeed optimizable for reflectivity,
an optimization on 20 discs with fR as the objective function is presented here.
Specifically we use quadratic scaling, i.e. eq. (4.2) concretized as

fR(x) =
n∑

i=1

|R(x, νi)−R0|2.

The reference reflectivityR0 is taken from the optimized state in section 6.1.1. Nelder-
Mead is chosen as the optimizer here. Fig. 6.18 shows the progress of the objective
value through the optimization and the resulting reflectivity compared to the refer-
ence one, fig. 6.19 displays the distances of the reference curve compared to the result,
together with a boost factor calculation for the intermediate booster states. Inter-
estingly, we achieve a decent boost factor curve from completely different distances,
which reflects the redundancy of the boost factor curves. It should be emphasized that
the optimizer had no knowledge about boost values whatsoever. In this instance the
Nelder-Mead algorithm has been used with 1000 iterations maximum, 1 µm minimum
simplex size, which was initialized along the coordinate axes with d = 100 µm and no
unstucking. The starting point was the same equidistant state as before. Discs were
moving for a total of 7 minutes and 7 seconds for a combined distance of 24.8 cm.
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Figure 6.18: Objective value throughout an optimization by reference reflectivity
(top), reference reflectivity from an optimized state and final reflectivity after new
optimization (bottom). The full lines represent the real part, dashed the imaginary
part of the reflectivity.
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Figure 6.19: Distances at which the reference reflectivity has been taken, compared to
the newly optimized ones (top). Boost factor curves of intermediate states throughout
the optimization process (bottom).
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6.3 80 discs by boost factor

To close out this chapter we take a quick look at an optimization of a full scale
MADMAX setup with 80 lanthanum aluminate discs. Given their long runtimes1 and
as of now poor performance with such a large disc number, we will omit the linesearch
algorithms here. We remain with Nelder Mead and simulated annealing, the results of
which can be seen figs. 6.20 and 6.21, showing the optimization processes. 50 evenly
spread frequency sampling points were used. We may expect a minimum objective
value of ∼ −70 000. From the slopes at the trace ends it can be deduced that there
still is potential for improvement.

180 discs require a larger amount of frequency sampling points to capture the smaller boost factor
structures and substantially more iterations. The required movements for the derivatives scale with
n and n2 respectively. This makes it highly time consuming to test for good parameters.
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Figure 6.20: Nelder Mead – 80 disc optimization with 100 000 iterations, simplex
initialized along coordinate axes with d = 50 µm, minimum simplex size of 1 nm
and no unstucking. Total elapsed travel time is 35 minutes and 35 seconds with a
combined travel distance of 3.04m. Process of the boost curve (top) and trace of the
objective value (bottom).
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Figure 6.21: Simulated annealing – 80 disc optimization with T linearly falling from
5 to 0 in 100 001 steps, δ = 50 µm, nreset = 5000 and no unstucking. Total elapsed
travel time is 2 hours and 27 minutes with a combined travel distance of 28.7m.
Process of the boost curve (top) and trace of the objective value (bottom).
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7 Optimization on hardware

The first trials will start with the most basic setup – a mirror in front of an antenna
– until we gradually work our way up to 3 discs. We will employ the reflectivity
objective function fR with no extra scaling. In other words, we record the reflectivity
at a certain position and try to find back to it purely based on the system response.
The primary objective at this stage in development is to validate the motor control
systems and functionality of the algorithms. We make efforts to align everything
properly1 but omit the validation thereof and analysis of error sources; it should not
matter if the reference measurement is imperfect, as long as we get back to the same
imperfect signal. If it works this way, we can feel confident that it is robust against
errors and works only better with higher quality systems.

7.1 Devices and basic setup

At our disposal we have the following inventory:

• One planar copper mirror of 20 cm diameter.

• One parabolic mirror with a focal length of 30 cm and ∼10 cm in diameter.

• One cylindrical horn antenna with 6 cm opening diameter2.

• Three sapphire discs of 30 cm diameter and 1mm thickness, accompanied by

• three Standa 8MT30-50 stepper motors with an effective range of ∼5 cm.

• A PNA N5224B Vector Network Analyzer with two ports as the measurement
tool.

• Various coaxial cables and structural items to connect and position everything.

The motors operate on a step/microstep unit basis, where the 256 microsteps per
1 step mode is chosen. The supplier states a conversion of 800 steps per mm, which
is quickly confirmed with a measuring tape; we abstain from a proper, precise cali-
bration for now. This gives a theoretical smallest step range of ∼5 nm.

1Special thanks to Erdem Öz for performing the bulk of the construction effort.
2The opening end is always chosen as the reference point for distance measurements on the

antenna.
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The dielectric constant of the sapphire in use cannot be precisely measured di-
rectly, but measurements on similar samples yielded ϵ ≈ 9.4 at room temperature for
the c-cut direction, which is parallel to the beam axis [22]. Specifically manufactured
fixtures made of aluminum are used to mount the discs on the motors.

The network analyzer can emit frequencies from 10MHz to 43.5GHz with a max-
imum power of 14 dBm. For every distinct set of settings on the device, especially the
frequency range, a calibration needs to be performed. Every port is measured once
each terminated with an open, a load and a short calibration standard3. Although
we only use a single port, a through measurement between both ports is also taken
for completenesses sake. The relevant port is calibrated including a cable up to the
antenna connector. It should be noted here, that the device displays a shifting tem-
poral behavior beyond the default noise. Fig. 7.1 shows reflectivity measurements
with the copper mirror placed ∼10 cm in front of the antenna and their impact on an
objective value, in a time span of about 20 minutes. This behavior forces us to always
take the reference point shortly before the optimization procedure and can obscure
the origin point, if the process takes too long. The origin of this systematic is as of
yet unknown. In order to reduce noise and increase the signal’s immediate temporal
stability, we may average over multiple consecutive measurements at the expense of
time; a measurement including data transfer taking about naverage · 13ms plus some
minor overhead.

The booster part of an exemplary setup with two discs in front of the copper
mirror is shown in fig. 7.2. For further information on the devices consult appendix
C.

3From a Keysight 85056D 2.4mm Economy Calibration Kit.
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Figure 7.1: Temporal evolution of the absolute value of a static systems reflectivity at
20.319GHz (top) and the corresponding impact on an objective value with the first
data point as reference (bottom). Frequency range is 3GHz centered at 20GHz with
128 sweep points. Data kindly provided by Nick Michaelis, cf. [34], fig. 20.
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Figure 7.2: Three sapphire discs in front of the copper mirror. The motors can be
seen at the foot of each disc’s scaffolding to the bottom-left, top-right and just below
the discs. The discs vary slightly in height which is not an immediate problem given
the discs’ size compared to copper and focusing mirror. Both mirrors and the antenna
are about to be replaced with larger variants in the near future. The orange box at
the left edge of the picture is an emergency shut-off prototype in case of disc collision.
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7.2 Mirror scan

With this simple setup we want to familiarize ourselves with the reflectivity objective
function and test the motor control. The mirror is placed directly in front of the
antenna, causing standing waves between the components. As we sweep over multiple
frequencies at once, the signal cannot be uniformly periodic with the distance. Hence
it is possible to identify a position from its unique signal. We can replicate this setup
in the software as a booster with a single disc with a relative dielectricity of 1 and
no physical thickness. One motor is turned in the opposite direction and the mirror
mounted on top4. In fig. 7.3 an exemplary reflectivity signal is shown for an input
power of 9 dBm at a distance of 5 cm, which is then used as reference for a scan of fR
for the entire motor range, see fig. 7.4. The same setup is simulated analytically in
1d, which is also depicted in fig. 7.3. The discrepancy is mainly due to 3d effects, e.g.
the unfocused beam and general losses; the overall structure of the objective value
matches nicely.

Figure 7.3: Reflectivity of a copper mirror placed 5 cm from an antenna. 128 frequency
points over a span of 3GHz, centered at 20GHz.

4Technically the antenna could be mounted instead, but this would disturb the cable during
movement.
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Figure 7.4: Scan of fR over the mirror-antenna distance with the aforementioned
reflectivity as reference, analytically and physically.
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7.3 Two discs and a mirror

This setup will be the main focus of a first analysis, because with two degrees of free-
dom, the optimization processes can be visualized in a highly comprehensive manner.
This is helpful to recognize differences between the optimizers and identify strengths
and weaknesses.

Here, we build a setup that is close to a potential realization of the MADMAX
concept – meaning the discs are put close to the mirror and each other, the parabolic
mirror is used to focus a Gaussian beam on the discs. A schematic view of the setup
with the approximate distances is shown in fig. 7.5. In the following the same target

≈ 85 cm

≈ 
1

3
 c

m

antenna

focusing mirror

copper mirror

discs

Figure 7.5: Schematic of the 2 disc setup in top-down view. The discs are situated
in close proximity to the mirror on the left, focusing mirror and antenna to the right.
Not to scale.

position and thus reference reflectivity is chosen for all optimizations. The frequency
range will be fixed at a center of 20.31GHz with 1.5GHz in span and 128 points5.
We want to use a position that is meaningful to MADMAX, following [20] interesting
boost factor values may be found at strong downward peaks in reflectivity. A time-
gating filter is activated on the VNA to filter out the internal reflection between
antenna and connector and antenna back reflection towards the disc system, the effect
of which is shown in fig. 7.6. Then the discs are moving through increasing equidistant
positions similar as in chapter 6 and the position with the minimal reflectivity at the
center frequency is searched. It is found to be xc := (13, 27)mm.

5This specific frequency range was chosen, because it places the discs far enough apart to allow
for sufficient movement and is about the width of a peak with 2 discs. Further, the peak appeared
by chance while playing around with the settings and the experimenter was afraid of losing it.
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Figure 7.6: Reflectivity measurements at p0 with
and without time-gating respectively.

A grid scan of fR with 4mm
edge length and 41×41 points
around xc is performed, once us-
ing time-gating and once with-
out. Both scans and an analyt-
ical equivalent may be seen in
figs. 7.7 and 7.8. This gives us a
first impression of the optimiza-
tion landscape and in which re-
gions we should expect our algo-
rithms to be successful. While
the left boundary appears to be
less restricting, we should be
able to reasonably expect suc-
cessful optimizations within at
least 0.5mm around xc in all di-
rections. It is important to notice the multiple local minima along the ’ridge’ in the
scan with time-gating. These turn out to be strong hindrances for the optimizers as
they are often being converged to and difficult to unstuck from. Exemplary optimiza-
tions with time-gating may be found in appendix B. These side minima do not appear
in the analytical scan, consequentially we use the unprocessed reflectivities for now.

Exemplary optimization processes will be presented in the following sections. With
fig. 7.7 in mind, x0 = xc + ∆x with ∆x = (−1, 1)mm is chosen as the starting
point, as it seems to provide an interesting challenge for the optimizer in terms of
length and non-linearity of the solution path. The reference reflectivities at xc are
always recorded freshly immediately prior to every optimization, averaged over 100
measurements. Appendix B contains additional data of each optimization process,
alongside a failed attempt with the unmodified Newton method. The runtimes and
final distances ∆fxi to xc have been compiled to table 7.1.∑

∆X [cm]
∑

∆t [s] ∆fx1 [µm] ∆fx2 [µm]
Nelder-Mead 1.6 49 -0.3 -0.3
Annealing 1.8 88 -1.7 12.7
Steepest 0.9 128 -8.2 34.6
Hybrid 1.7 246 -8.3 7.3

Table 7.1: Runtimes and accumulated distances in the first physical tests of each
optimizer, together with the distance to the target position in both axes.

In short summary, all algorithms managed to successfully converge to disc po-
sitions within a few microns of the reference position, with the closest being the
Nelder-Mead algorithm. We should however not jump to conclusions about the po-
tential of the others, as the Nelder-Mead trial used more averaging of the system
readout and thus was more robust against noise. A final judgement should be made
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Figure 7.7: Scan of fR around xc with time-gating active (top) and without (bottom).
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Figure 7.8: Scan of fR around αxc with analytical simulations in 1d. α = 1.114 is a
correction to ensure that a similar peak is found at the center frequency.

only after improvements to the noise suppression of the setup were made, such as an
adsorbent casing, vibration mitigation6 and a compensation of the VNA systematic
shown in fig. 7.1; the latter of which should also be regarded, since the algorithms
have varying runtimes. For the scope of this thesis, however, we are contented with
every optimizer performing reasonably well.

6With the current construction, if a motor accelerates to full speed and then stops, the disc it is
carrying visibly vibrates for a brief moment. This could be met with a short rest time after each
moment, depending on the distance/speed traveled.
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7.3.1 Nelder-Mead

Because this algorithm requires a relatively small amount of objective function calls
and is rather sensitive to the ordering of the vertices, we average over 100 reflectivity
measurements every time to calculate the objective value. Figs. 7.9 and 7.10 display
the process of the optimization. The parameters used in this specific optimization
were a regular simplex initialization with d = 0.5mm, a minimum simplex size of
dmin = 1 µm, maximum 50 iterations and regular simplex unstucking at a threshold
of 1. A quick look at fig. 7.10 reveals, that no unstucking occurred and it termi-
nated early in about 40 iterations. Especially in the early part of the process, several
expansion steps are performed uphill which then have to be backtracked to the con-
traction points on the same line. This could potentially be strongly improved with a
linesearch-like approach. Due the algorithms ability of converging to arbitrarily small
simplex sizes, its overall fast summed movement time and the high averaging count,
it is able to almost perfectly reach the targeted position.

7.3.2 Simulated annealing

Here, we employ averaging over 10 measurements and use a yet again linearly falling
temperature series T from 0.1 to 0 in 201 steps, a random magnitude δ = 100 µm
and nreset = 50. The optimization process is shown in figs. 7.11 and 7.12. The
best solution was approximately found after about 100 iterations with only minute
improvements after. With only two degrees of freedom and fairly low temperature
values, the process is quite similar to the steepest descent approach, in that it mostly
seems to move perpendicular to the contour lines. The performance close to the target
point could be improved by lowering the step length δ or employing more averaging.
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Figure 7.9: Full movement history of the discs in the Nelder-Mead algorithm (top)
and trace of the optimization with the simplices of every iteration (bottom).
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Figure 7.10: Trace of the best vertexes objective value (top) and its disc distances
(bottom) during optimization with Nelder-Mead.
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Figure 7.11: Full movement history of the discs in the simulated annealing algorithm
(top) and trace of the best solution of every iteration (bottom).
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Figure 7.12: Trace of the best current solutions objective value (top) and its disc
distances (bottom) during optimization with simulated annealing.
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7.3.3 Steepest descent

In the first linesearch method we again use 10 averaged measurements and employ
extended linesearch for 50 steps with a step length α = 10 µm in a maximum of 20
iterations, the finite difference distance is h = 5 µm. Unstucking with δ = 100 µm
is used. The results are shown in figs. 7.13 and 7.14; it should be noted, that for
purposes of visibility in the scan, the last 9 iterations have been cut here manually.
The small ‘dots’ at the beginning of each linesearch are the movement for the finite
difference calculation of the first derivative. The step limit of the linesearch is rarely
maxed out, thus wasting time and travel distance. It struggles to converge as close
as the previous algorithms, which indicates the step length α should be reduced close
to the minimum.

7.3.4 Hybrid method

Finally, with our custom hybrid method, we average 10 times once more and use
the same linesearch strategy with 50 steps for α = 10 µm each. The derivatives are
calculated to second order with h1 = 5 µm and h2 = 10 µm. The main reason for
choosing h2 > h1 is that the second derivative is more vulnerable to noise, because
more components are added together; larger finite differences reduce the relative un-
certainties when subtracting similar values from each other. The ‘dots’ have the same
origin as before, now more pronounced. Some step directions are clearly an improve-
ment over the steepest one, some perform worse. We notice the same problems with
overshooting and final convergence as with the other linesearch method. Neverthe-
less, linesearches by themselves prove to be very time-efficient with the right step
directions and can be still improved from here on out.
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Figure 7.13: Full movement history of the discs in the steepest descent algorithm
(top) and trace of every iterations linesearch solution (bottom).
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Figure 7.14: Trace of the objective value (top) and its disc distances (bottom) during
optimization with steepest descent.
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Figure 7.15: Full movement history of the discs in the custom hybrid algorithm (top)
and trace of every iterations linesearch solution (bottom).

78



Figure 7.16: Trace of the objective value (top) and its disc distances (bottom) during
optimization with the custom hybrid method.
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7.4 Three discs and a mirror

The analysis section will be concluded by a short outlook on a setup with three
discs. It remains exactly as in the section above, the third disc and its accompany-
ing motor are simply added in the free space between second disc and the focusing
mirror. The starting position is found in a similar manner to the two disc case7 as
xc := (13.8, 28.0, 44.0)mm and every discs is shifted by 1mm away from the mir-
ror, ∆x = (1, 1, 1)mm. Given its so far strong performance, the only test presented
here features the Nelder-Mead algorithm with the same parameters as in the previ-
ous section8. The optimizer converged at a final distance to the reference position of
∆fx = (4.6,−0.4, 8.3) µm, which, regarding the large (and blind9) shift ∆x, can be
considered very successful. Overall disc movement time was 1 minute and 13 seconds,
for a total travel distance of 3.3 cm. The process of the optimization is depicted in
figs. 7.17 and 7.18.

7Due to some mistake, it is not exactly equidistant, but a peak in the time-gated signal was found
nonetheless.

8Note that the initial simplex and the control parameters of the algorithm itself are in dependence
of the dimensionality, i.e. disc number.

9I.e. no scan or investigation of the objective value’s landscape was performed prior to the test.
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Figure 7.17: Trace of the objective value (top) and its disc distances (bottom) during
optimization with the Nelder-Mead algorithm.
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Figure 7.18: History of the objective value (top) and its disc distances (bottom)
during optimization with the Nelder-Mead algorithm.
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8 Conclusion

This thesis laid the groundwork for operating and analyzing a MADMAX-like pro-
totype at RWTH Aachen University and extended the toolbox for performing and
streamlining the optimization procedures. Four fundamentally different optimization
algorithms were implemented in a versatile, modular, extendable way and tested on
this specific problem. All methods were shown to be successful. Precisely, it was
demonstrated that optimization with the respective algorithms does indeed work in
position space, both in ideal simulations and on the physical prototype. We have fur-
ther shown that optimization on MADMAX is possible based on a system response
such as the boosters reflectivity, which is important as the boost factor, in general,
cannot be measured directly.

Several suggestions for further development were made throughout, but we have
not yet considered adaptive parameters, i.e. changing an optimizers parameters based
on its current optimization state. Tangible examples would be reducing the step size
(by slowing down the motors) during a linesearch, thus creating a finer scan, or per-
haps to increase the amount of averaging when closing in on the target. It could
even be feasible to run different optimizers consecutively on the same state to play
out individual strengths in different stages of the process. For example, the first few
iterations of the hybrid linesearch method showed good convergence rates1 and al-
lowing long, time effective searches but struggling to converge on the final stretch.
Nelder-Mead and simulated annealing were consistent in reaching the best objective
values but showed slower convergence in the beginning.

Further, we have not tested the repositioning optimization procedure here but
focused only on optimizing entirely from scratch. The measurement times were not
taken into account either, because these could be substantially reduced with a better
system. The impact of the amount of object function calls needs to then be explored
further. It is not reasonable to make a final statement regarding the best of the
optimizers yet, because many things are subject to change and further investigation.
Nevertheless, the tests can be used as descriptive examples and as the basis for future
development.

1Specifically in the 20 disc simulated trials.
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A Equidistant spacings with uncertainties in dis-

tance space

Figure A.1: Shifting of the initial peak by introduction of uncertainty on the equidis-
tant spacings in distance space.
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B Additional optimization data

Figure B.1: Full movement history of the discs with the unmodified Newton method.
In this narrow valley, the algorithm’s flaw regularly causes it to pick the wrong direc-
tion regularly. This is especially notable towards the left edge of the plot, where it
repeatedly attempts to search uphill.
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Figure B.2: Full movement history of the discs with time-gating active using Nelder-
Mead (top) and trace of the respective objective value (bottom). Final distances to
the reference position are ∆fx = (−4.7 µm,−3.6 µm).
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Figure B.3: Full movement history of the discs with time-gating active using the
hybrid method (top) and trace of the respective objective value (bottom). Final
distances to the reference position are ∆fx = (−0.24mm,−0.47mm). The optimizer
is stuck in one of the local side minimas.
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Figure B.4: History of the objective value (top) and its disc distances (bottom) during
optimization with Nelder-Mead.
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Figure B.5: History of the current positions objective value (top) and its disc distances
(bottom) during optimization with simulated annealing.

93



Figure B.6: History of the objective value (top) and its disc distances (bottom) during
optimization with steepest descent.
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Figure B.7: History of the objective value (top) and its disc distances (bottom) during
optimization with the custom hybrid method.
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C Device information

Material Sapphire, KY grown, >99.98%, no bubbles, cracks, twins, etc.
Orientation C-plane (0001) ±0.3◦

Notch no notch
Diameter (300± 0.25)mm
Thickness (1000± 25) µm
Surface 2 sides epi ready polished (Ra < 0.3 nm)
TTV < 80 µm
BOW < 80 µm
Edges Protective chamfer

Table C.1: Specifications of the 3 sapphire discs in use.

Ideal Freq. Range [GHz] 17.5 - 20.5
Antenna Port 0.470” Diameter Circular Waveguide
Material Aluminum
Finish Inside: Silver Plated; Outside: Black Paint
Size 4.50” (Length) × 2.44” (Diameter)

Table C.2: Specifications of the conical horn antenna (selection).

Type Off-Ax. PM Diameter [mm] 101.60± 0.38
EFL [mm] 152.40 FL Tolerance [%] ±1
Curv. Radius [mm] 152.40 Coating Prot. Au (0.7-1 µm)
Coating Type Metal Surface Quality 80-50
Off-Set Angle [°] 90 PFL [mm] 76.2

Surface Figure, RMS 1λ Surf. Roughn. [Å] < 100RMS
Wavel. Range [nm] 700-1000 Clear Aperture [%] 90
Substrate Al 6061-T6 Y Offset [mm] 152.4
Refl. Wavefront, RMS 2λ

Table C.3: Specifications of the parabolic focusing mirror.

The planar copper mirror to the rear of the booster is custom-made and no further
specifications can be provided. Full data sheets for the motors and the VNA may be
accessed through the supplier at https://www.standa.lt/products/catalog/mot
orised_positioners?item=348 and https://www.keysight.com/us/en/produ

ct/N5224B/pna-microwave-network-analyzer-900-hz-10-mhz-43-5-ghz.html

respectively.
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