Axions beyond Gen 2, Jan 28th 2021 Chang Lee

AD MAX

- Theoretical motivations
- Scale-up & challenges
- Dielectric haloscope
- MADMAX experiment
- Proof-of-principle setup: 100mm setup in LHe
- Conclusion

Axions beyond Gen 2, Univ. of Washington, Jan 2021

"The box is empty... OR IS IT?"

from Twitter@FrankWilczek

High frequency challenge How to be sensitive above 10 GHz

- $P_{sig} \propto QV$.
- Single-mode resonator shrinks rapidly at high frequency.
- Q also decreases with higher skin loss
- How to reach QCD above 10 GHz?

Axions beyond Gen 2, Univ. of Washington, Jan 2021

image from Wikipedia: O'zapft is!

Axions beyond Gen 2, Univ. of Washington, Jan 2021

1 GHz cavity

10 GHz cavity

Scale-up & challenges

https://abeautifulmess.com/how-to-build-a-champagne-tower/

Dielectric-loaded resonator

- Resonant cavity loaded with dielectric to maximize overlap with E_a .
 - Concept already used by ORPHEUS and ORGAN.

magnetic field

ORPHEUS: 3rd Workshop on Microwave Cavities and Detectors for Axion Research, Aug. 2018 LLNL, ORGAN: arXiv:1706.00209

Increasing Q-factor Quality front

- Example: Bragg resonator: Q₀ ~100k @ TE01

- Q > 100k is challenging, especially with
 - complicated structures
 - cryogenic temp
 - Tuning

Increasing volume

- Large volume: large magnet & cryostat
 - Expensive, but solutions exist
- Increase the transverse dimension:
 - Over-moded system: Mode-crowding, mode-crossing loss, coupling ambiguity

Axions beyond Gen 2, Univ. of Washington, Jan 2021

Increasing volume **longitudinal dimensions**

- Matched boundary (antenna, taper):
 - No longitudinal modes
 - Detect **Traveling wave** instead of standing wave modes.
 - Lower Q (or boost factor), but Q increases with many disks
- Reflected beam \neq axion induced beam

Without lateral walls "open" system

1. less mode-crowding

A. radiation loss via surface current

radiation loss B. on sides

Axions beyond Gen 2, Univ. of Washington, Jan 2021

TE11

"closed"

system

Open vs. closed systems

• Example: simulation of 3 x ϕ 100mm sapphire disks tuned @ 19 GHz.

Axions beyond Gen 2, Univ. of Washington, Jan 2021

Dielectric haloscope

Dielectric haloscope

A. Caldwell, et al., PRL, 118(9), 091801.

- Large, over-moded, leaky resonator
 - Matched boundary on one end. Open / closed boundary on sides

• Boost factor:
$$\beta = \frac{E^{\gamma}}{E_0}$$
.

• $P_{sig} \propto \beta^2 A$ (equivalent to QV for cavities).

 $\mathbf{k}_1 \boldsymbol{\prec}$

Disk spacing Resonant case

X

- Maximize the axion-induced radiation from the metal surface
 - Impedance transform: $Z_0 \rightarrow 0$.
 - A special case of steppedimpedance filters, or generalized Bragg resonator

(c)

 Limitation: not considering emission from most disks, disk $\# < \sim 5$

Axions beyond Gen 2, Univ. of Washington, Jan 2021

impedance of metal mirror

Disk spacing "Waveguide structure"

	Mirror matching	equally-spaced disks	free space matching
impedance	0 to <i>Z</i> _c	characteristic impedance (Z_c)	Z_c to Z_0
air gap length	$\sim \lambda/4*$	from Bloch impedance	impedance transform
# of disks	0~1	>2	1~2

Axions beyond Gen 2, Univ. of Washington, Jan 2021

* Distance to the first unit cell, not disk.

Ultimate dielectric haloscope Sensitive to post-inflationary QCD-axion

Mirror (not visible)

Axions beyond Gen 2, Univ. of Washington, Jan 2021

MADMAX collaboration

MADMAX: Post-inflationary axion dark matter search with a

- R&D platform
- Cryostat design fixed
- ALPs / HP search

Axions beyond Gen 2, Univ. of Washington, Jan 2021

dielectric haloscope cusing 20 disks hirror

Radio

frequency

baffles

receiver cryostat

Cryogenic piezo positioner & laser interferometer assembly

LHe

(4K)

e

MADMAX and CERN's Morpurgo magnet

A new collaboration, MADMAX, will seize the chance to use a CERN magnet named Morpurgo to test their dark-matter prototype

Axions beyond Gen 2, Univ. of Washington, Jan 2021

CERN Bulletin https://home.cern/news/news/experiments/madmax-and-cerns-morpurgo-magnet

Test of the components in B-field

Quantum-limited amplifier Traveling wave parametric amplifier (TWPA)

- First 10 GHz TWPA produced. PRX 10, 021021
- 1K noise temp, 20 dB gain @ 10 GHz.
- Future development to 30 GHz.

100mm LHe setup

- Proof-of-principle
- Resonance @ 19 GHz
 - Air gaps from impedance matching

Closed system w/ taper

closed system: metallic walls

Axions beyond Gen 2, Univ. of Washington, Jan 2021

parabolic taper

circularrectangular WG transition

Cryogenic operation

- Cryostat is ready.
- RF calibrated down to circular WG at 4K

Axions beyond Gen 2, Univ. of Washington, Jan 2021

LHe bath cryostat

Background noise

R. P. Meys, IEEE Trans. Microwave Theory Techn. 26, 34 (1978).

Hidden photon search

•
$$\chi = 4.5 \times 10^{-9} \left(\frac{P_{\text{sens}}}{10^{-13} \text{ W}}\right)^{\frac{1}{2}} \left(\frac{1 \text{ m}^2}{A_{\text{mirror}}}\right)^{\frac{1}{2}}$$

10⁻¹³ '

-11

10

 \sim

axion dark matter

Stay tuned!

Back-up

Radiation from open booster

freq(146)=19.045 GHz

Axions beyond Gen 2, Univ. of Washington, Jan 2021

Mechanical precision study

Simulation paper in preparation

Reflectivity vs. beam waist for open system

Axions beyond Gen 2, Univ. of Washington, Jan 2021

Transfer matrix formalism A. J. Millar et al., JCAP01 (2017) 061

Exact calculation of axion-induced traveling wave from give geometry

$$\begin{pmatrix} R_{r+1} \\ L_{r+1} \end{pmatrix} = \mathsf{G}_r \mathsf{P}_r \begin{pmatrix} R_r \\ L_r \end{pmatrix} + E_0 \,\mathsf{S}_r \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
reflection
$$\mathsf{G}_r = \frac{1}{2n_{r+1}} \begin{pmatrix} n_{r+1}+n_r & n_{r+1}-n_r \\ n_{r+1}-n_r & n_{r+1}+n_r \end{pmatrix}$$
propagation
$$\mathsf{P}_r = \begin{pmatrix} e^{+i\delta_r} & 0 \\ 0 & e^{-i\delta_r} \end{pmatrix},$$
source
$$\mathsf{S}_r = \frac{A_{r+1}-A_r}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Axions beyond Gen 2, Univ. of Washington, Jan 2021

MAX

Simulation parabolic taper

- "Matched" boundary
- RL > 20dB
- TE11 mode at the ports
- Additional gap btw. taper and booster.
- J. Diane, Int. J. Infrared Milli. Waves 5 (1984)

Axions beyond Gen 2, Univ. of Washington, Jan 2021

mm Ey 50 100 150 0 20 20 ~ TE11

- Simulation ~ 1dB vs. data > 6 dB
- Surface current leakage: solution: indium or EMI gasket
- Radiation leakage thru dielectric rims: solution: EMI gasket, metal sputtering

Axions beyond Gen 2, Univ. of Washington, Jan 2021

port 1

